首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal Complexes of Biological Important Ligands. LXXXII. Triphenylphosphine Molybdenum, Tungsten, Ruthenium, and Iridium Complexes of N-Acyl-α-Aminocarboxylates The reactions of the hydrido complexes RuHCl(CO) · (PPh3)3, RuH2(PPh3)4 and IrH3(PPh3)3 with N-acyl-α-aminocarboxylates give the carboxylate complexes RuCl(O2CCHRNHCOR′)(CO)(PPh3)2 ( 1–3 ), RuH(O2CCHRNHCOR′)(PPh3)3 ( 4–6 ) and IrH2(O2CCH2NHCOPh)(PPh3)3 ( 7 ). The structure of RuCl · (O2CCHNHCOPh)(CO)(PPh3)2 ( 1 ) has been determined by x-ray diffraction. The triphenylphosphine complexes MBr · (O2CCH2NHCOR)(CO)2(PPh3)2 (M = Mo, W) ( 8–12 ) and Mo(O2CCHRNHCOR′)2(CO)2(PPh3)2 ( 13–17 ) are formed from MBr2(CO)2(PPh3)2 (M = Mo, W) with one or two equivalents of N-acyl-a-aminoacidates, respectively.  相似文献   

2.
Heterobimetallic complexes of formula [M{(PPh2)2C2B9H10}(S2C2B10H10)M′(PPh3)] (M=Pd, Pt; M′=Au, Ag, Cu) and [Ni{(PPh2)2C2B9H10}(S2C2B10H10)Au(PPh3)] were obtained from the reaction of [M{(PPh2)2C2B10H10}(S2C2B10H10)] (M=Pd, Pt) with [M′(PPh3)]+ (M′=Au, Ag, Cu) or by one‐pot synthesis from [(SH)2C2B10H10], (PPh2)2C2B10H10, NiCl2 ? 6 H2O, and [Au(PPh3)]+. They display d8–d10 intermetallic interactions and emit red light in the solid state at 77 K. Theoretical studies on [M{(PPh2)2C2B9H10}(S2C2B10H10)Au(PPh3)] (M=Pd, Pt, Ni) attribute the luminescence to ligand (thiolate, L)‐to‐“P2‐M‐S2” (ML′) charge‐transfer (LML′CT) transitions for M=Pt and to metal (M)‐to‐“P2‐M‐S2” (ML′) charge‐transfer (MML′CT) transitions for M=Ni, Pd.  相似文献   

3.
2-(Azidomethyl)phenyl isocyanide, 2-(CH2N3)C6H4NC (AziNC), coordinates to some cationic Pt(II) and Pd(II) species to afford isocyanide complexes of the type trans-[MCl(AziNC)(PPh3)2][BF4] (M=Pt, l; Pd, 2). AziNC is coordinated also in some neutral Pt(II) and Pd(II) species such as [MCl2(AziNC)2] (M=Pt, 3; Pd, 4) derived from the reactions of 2 equiv. of AziNC with [PtCl2(COD)] and [PdCl2(MeCN)2], respectively. Complexes 1 and 2 react with 1 equiv. of PPh3 affording the heterocyclic carbene complexes trans-[MCl{(H)}(PPh3)2][BF4] (M=Pt, 5; Pd, 6). Complexes 3 and 4 react with 1 equiv. of PPh3 displacing the isocyanide with the formation of the complexes cis-[MCl2(AziNC)(PPh3)] (M=Pt, 7; Pd, 8). These latter ones react with 2 equiv. of PPh3 affording as the final products the cationic carbene species trans-[MCl{(H)}(PPh3)2][Cl] (M=Pt, 9; Pd, 10). Complex 5 was also characterized by single crystal X-ray diffraction. The carbene complex is square-planar and the angle formed between the platinum square plane and the heterocyclic carbene ligand is 87.9(2)°. The C(1)-N(1) and C(1)-N(2) bond distances in the latter of 1.32(2) and 1.30(2) Å, respectively, are short for a single bond and indicate extensive π-bonding between the nitrogen atoms and the carbene carbon.  相似文献   

4.
The redox reaction of bis(2-benzamidophenyl) disulfide (H2L-LH2) with [Pd(PPh3)4] in a 1:1 ratio gave mononuclear and dinuclear palladium(II) complexes with 2-benzamidobenzenethiolate (H2L), [Pd(H2L-S)2(PPh3)2] (1) and [Pd2(H2L-S)2 (μ-H2L-S)2(PPh3)2] (2). A similar reaction with [Pt(PPh3)4] produced only the corresponding mononuclear platinum(II) complex, [Pt(H2L-S)2(PPh3)2] (3). Treatment of these complexes with KOH led to the formation of cyclometallated palladium(II) and platinum(II) complexes, [Pd(L-C,N,S)(PPh3)] ([4]) and [Pt(L-C,N,S) (PPh3)] ([5]). The molecular structures of 2, 3 and [4] were determined by X-ray crystallography.  相似文献   

5.
The series of platinum(II), palladium(II), and nickel(II) complexes [ML2(dppe)] [M = Ni, Pd, Pt; L = 4–SC5H4N or 4–SC6H4OMe; dppe = Ph2PCH2CH2PPh2] containing pyridine-4-thiolate or 4-methoxybenzenethiolate ligands, together with the corresponding gold(I) complexes [AuL(PPh3)], were prepared and their electrospray ionization mass spectrometric behavior compared with that of the thiophenolate complexes [M(SPh)2(dppe)] (M = Ni, Pd, Pt) and [Au(SPh)(PPh3)]. While the pyridine-4-thiolate complexes yielded protonated ions of the type [M + H]+ and [M + 2H]2+ ions in the Ni, Pd, and Pt complexes, an [M + H]+ ion was only observed for the platinum derivative of 4-methoxybenzenethiolate. Other ions, which dominated the spectra of the thiophenolate complexes, were formed by thiolate loss and aggregate formation. The X-ray crystal structure of [Pt(SC6H4OMe–4)2(dppe)] is also reported.  相似文献   

6.
A new type of phosphino-phosphonium ylide ligand bearing a chiral sulfinyl center affords a P,C-chelated palladium(II) complex with a resolved asymmetric ylidic carbon atom. According to 31P NMR analysis of the crude material, the diastereoselectivity of the complexation at room temperature is ca. 7:1. In the crystal state, an X-ray diffraction analysis of one epimer reveals a quasi C2-symmetric chloro-bridged dinuclear structure, where the (S) configuration of the sulfur atom induces a (S) configuration of the ylidic carbon atom. A in situ Pd(0) catalyst generated from the phosphino-ylide and Pd(PPh3)4 promotes allylic substitution of 3-acetoxy-1,3-diphenylpropene by sodium malonate in 70% yield and 5% e.e.  相似文献   

7.
Four new Pd(II) coordination complexes using 2-(3-methyl-5-phenyl-1H-pyrazol-1-yl)ethanol (L) with different counter-anions have been prepared to examine their effect on the coordination mode of the ligand as well as on the self-assembly of the supramolecular structure. Reaction of trans-[PdCl2(L)2] (R) with AgCF3SO3 gives the ionic complex [Pd(L)2](CF3SO3)2 (1). When AgNO3 is used, [Pd(NO3)(L)2](NO3) (2) and [Pd(L)2](NO3)2 (3) are obtained in the ratio 70?:?30, respectively, where the nitrate ion is present in- and/or outside the coordination sphere. Reaction of R with Ag2SO4 in the presence of (NH4)2C2O4 yields [Pd(C2O4)(L)2] (4). These new complexes have been characterized by elemental analyzes, conductivity measurements, mass spectrometry, IR, 1H and 13C{1H} NMR spectroscopies, and X-ray diffraction, whenever possible. The denticity varies from N-monodentate to NO-bidentate, depending on the conditions, showing the versatility of L. Finally, the results of X-ray diffraction analyzes of 1 reveal that CF3SO3? plays a fundamental role in self-assembly, generating a 2-D supramolecular layer with different inter- and intra-molecular interactions. The easy preparation and the high efficiency of this ligand make it a promising alternative to improve established systems.  相似文献   

8.
An O-bonded sulphito complex, Rh(OH2)5(OSO2H)2+, is reversibly formed in the stoppedflow time scale when Rh(OH2) 6 3+ and SO2/HSO 3 buffer (1 <pH< 3) are allowed to react. For Rh(OH2)5OH2++ SO2 □ Rh(OH2)5(OSO2H)2+ (k1/k-1), k1 = (2.2 ±0.2) × 103 dm3 mol−1 s−1, k1 = 0.58 ±0.16 s−1 (25°C,I = 0.5 mol dm−3). The protonated O-sulphito complex is a moderate acid (K d = 3 × 10−4 mol dm−3, 25°C, I= 0.5 mol dm−3). This complex undergoes (O, O) chelation by the bound bisulphite withk= 1.4 × 10−3 s−1 (31°C) to Rh(OH2)4(O2SO)+ and the chelated sulphito complex takes up another HSO 3 in a fast equilibrium step to yield Rh(OH2)3(O2SO)(OSO2H) which further undergoes intramolecular ligand isomerisation to the S-bonded sulphito complex: Rh(OH2)3(O2SO)(OSO2)- → Rh(OH2)3(O2SO)(SO3) (k iso = 3 × 10−4 s−1, 31°C). A dinuclear (μ-O, O) sulphite-bridged complex, Na4[Rh2(μ-OH)2(OH)2(μ-OS(O)O)(O2SO)(SO3) (OH2)]5H2O with (O, O) chelated and S-bonded sulphites has been isolated and characterized. This complex is sparingly soluble in water and most organic solvents and very stable to acid-catalysed decomposition  相似文献   

9.
The preparation and structural characterization of dimeric Pd(I)-Pd(I) complex [Pd2{(PPh3)(OSO2CF3)}2].CH2Cl2 (1) and three palladium center [Pd3{(PPh3)(OSO2CF3)}2] (2) and [Pd3(PPh3)4](SO3CF3)2 (3) complexes are reported. The complexes exhibit coordination in which the phosphine phenyl ring is used to stabilize Pd(I) centers in (1) and, Pd(I) and Pd(0) centers in (2) and (3) by acting as π electron donors. The complexes were characterized by single crystal X-ray crystallography.  相似文献   

10.
The iodo-bridged sulfur ylide complex [Pd(μ-I)((CH2)2(SO)(CH3))]2 (1) when treated with dithiolates, acetylacetone and various Lewis bases gave [Pd((CH2)2(SO)(CH3))(S ∼ S)] (S ∼ S = S2CN(C2H5)2, S2COC2H5 and S2P(OC2H5)2), [Pd((CH2)2(SO)(CH3))(acac)] (acac = acetylacetonate) and [PdI((CH2)2(SO)(CH3))(base)]a (base = PPh3, (P(OMe)3, P(OPh)3 and C5H5N). In the presence of a phase transfer catalyst (PTC). The reactions rates and yields were greatly increased. Reaction of several related sulfur ylide complexes with I2, HI or aqueous NaOH gave 1. The single crystal structure of [Pd((CH2)2(SO)(CH3))2] was determined (orthorhombic, Pbcn, a 13.379(2), b 8.081(1), c 9.048(2) Å, V 978.2 Å3, Z = 4). The compound has a rather long PdCH2 bond (2.096(1) Å, mean).  相似文献   

11.
Synthesis and Structure of the Nitrido Complexes (PPh4)2[(O3Os≡N)2 MCl2] (M = Pd und Pt) and [{(Me2PhP)3Cl2Re≡N}2PdCl2] The threenuclear complexes (PPh4)2[(O3Os≡N)2MCl2] (M = Pd ( 1a ) and Pt ( 1b )) are obtained by the reaction of (PPh4) [OsO3N] with [MCl2(NCC6H5)2] (M = Pd and Pt) in form of orange red ( 1a ) or red brown ( 1b ) crystals. The compounds crystallize isotypically in the monoclinic space group P21/n with a = 1052.35(6), b = 1376.70(6), c = 1607.3(1) pm, β = 94.669(7)°, and Z = 2 for 1a and a = 1053.27(7), b = 1371.6(1), c = 1615.9(1) pm, β = 94.557(7)°, and Z = 2 for 1b . In the centrosymmetric complex anions [(O3O≡N)2MCl2]2— a linear MCl2 moiety is connected in trans arrangement with two complexes [O3Os≡N] via asymmetric nitrido bridges Os≡N‐M. For the M2+ cations such results a square‐planar coordination MCl2N2. The virtually linear nitrido bridges are characterized by distances Os‐N = 167.5 pm ( 1a ) and 164.2 pm ( 1b ) as well as Pd‐N = 196.2 pm and Pt‐N = 197.8 pm. The reaction of ReNCl2(PMe2Ph)3 with PdCl2(NCC6H5)2 in CH2Cl2 yields red crystals of the heterometallic complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] ( 2 ). It crystallizes as 2 · 2 CH2Cl2 in the monoclinic space group C2/c with a = 2138.3(5); b = 1260.9(3); c = 2375.6(2) pm; β = 96.09(1)° and Z = 4. In the threenuclear complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] with the symmetry Ci the coordination of the Pd2+ cation of the central PdCl2 unit is completed by two nitrido bridges Re≡N‐Pd to complexes (Me2PhP)3Cl2Re≡N forming a square‐planar arrangement. The distances in the linear nitrido bridges are Re‐N = 170.2 pm and Pd‐N = 197.1 pm.  相似文献   

12.
Conclusions We investigated the transformations of catalysts based on palladium complexes under the conditions of the catalytic reduction of nitrobenzene by carbon monoxide (II). We established that the reduced forms of the catalyst are Pd2(PPh3),4(CO)·H2SO4 and Pd2PPh3)4CO)· HClO4, while the reduced forms are Pd(PPh3)2SO4 and Pd(PPh3)3(H2O)(ClO4)2 in the sulfate and the perchlorate media, respectively.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 998–1002, May, 1989.  相似文献   

13.
Reactions of CpRuCl(PPh3)2 with bis(phosphino)amines, X2PN(R)PX2 (1 R=H, X=Ph; 2 R=X=Ph; 3 R=Ph, X2=O2C6H4) give neutral or cationic mononuclear complexes depending on the reaction conditions. Reaction of 1 with CpRuCl(PPh3)2 gives one neutral complex, [CpRu(Cl)(η2-Ph2PN(H)PPh2)] (4) and two cationic complexes, [CpRu(η2-Ph2PN(H)PPh2)(η1-Ph2PN(H)PPh2)]Cl (5) and [CpRu(PPh3)(η2-Ph2PN(H)PPh2)]Cl (6), whereas the reaction of 2 with CpRuCl(PPh3)2 leads only to the isolation of cationic complex, [CpRu(PPh3)(η2-Ph2PN(Ph)PPh2)]Cl (7). The catechol derivative 3, in a similar reaction, affords an interesting mononuclear complex [CpRu(PPh3){η1-(C6H4O2)PN(Ph)P(O2H4C6)}2]Cl (8) containing two monodentate bis(phosphino)amine ligands. The structural elucidation of the complexes was carried out by elemental analyses, IR and NMR spectroscopic data.  相似文献   

14.
Oxidative addition reactions of quinolines 1a , b with Pd(dba)2 in the presence of PPh3 (1:2) in acetone gave dinuclear palladium complexes [Pd(C,N‐2‐C9 H4N‐CHO‐3‐R‐6)Cl(PPh3)]2 [(R = H ( 2a ), R = OMe ( 2b ), which were reacted with isocyanide XyNC (Xy = 2,6‐Me2C6H3) to give novel iminoacyl quinolinylpalladium complexes 3a , b in good yields (81 and 77%). Cyclopalladated complexes 3a , b were also obtained in low yields (39 and 33.5%) via one‐pot reaction of 1a , b with isonitrile XyNC:Pd(dba)2 (4:1). The reaction of 3a , b with Tl(TfO) (TfO = triflate, CF3SO3) in the presence of H2O or EtOH causes depalladation reactions of complexes to provide the corresponding organic compounds 4a , b , 5a , b and 6a , b in yields of 41, 27 and 18 ? 19%, respectively. The products were characterized by satisfactory elemental analyses and spectral studies (IR, 1H, 13C and 31P NMR). The crystal structures 2a , 3a and 3b were determined by X‐ray diffraction studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

16.
The metal complexes [Ni{N(Ar)C(R)C(H)Ph}2) ( 2 ) (Ar = 2,6‐Me2C6H3, R = SiMe3), [Ti(Cp2){N(R)C(But)C(H)R}] ( 3 ), M{N(R)C(But)C(H)R}I [M = Ni ( 4 a ) or Pd ( 4 b )] and [M{N(R)C(But)C(H)R}I(PPh3)] [M = Ni ( 5 a ) or Pd ( 5 b )] have been prepared from a suitable metal halide and lithium precursor of ( 2 ) or ( 3 ) or, alternatively from [M(LL)2] (M = Ni, LL = cod; M = Pd, LL = dba) and the ketimine RN = C(But)CH(I)R ( 1 ). All compounds, except 4 were fully characterised, including the provision of X‐ray crystallographic data for complex 5 a .  相似文献   

17.
A series of heterodinuclear complexes with acetylene dithiolate (acdt2?) as the bridging moiety were synthesised by a facile one‐pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] (Tp’=hydrotris(3,5‐dimethylpyrazolyl)borate) and the W–Pd complexes [Tp′W(CN)(CO)(C2S2)Pd(dppe)] and [Tp′W(CO)2(C2S2)Pd(dppe)][PF6] (dppe=1,2‐bis(diphenylphoshino)ethane), which exhibit a [W(η2‐κ2‐C2S2)M] core (M=Ru, Pd), was accomplished by using a transition‐metal‐assisted solvolytical removal of the Me3Si‐ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] shows reversible redox chemistry, as does the prototype complex [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)][PF6]. Single crystal X‐ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt2? linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt2? in [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] relative to [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)]+. In addition, the influence of the overall complex charge on the metric parameters was investigated by single‐crystal X‐ray diffraction studies with the W–Pd complexes [Tp′WL2(C2S2)Pd(dppe)] (L=(CN?)(CO) or (CO)2). The central [W(C2S2)Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals.  相似文献   

18.
Thienylmercury(II)chloride reacts with [Pd(PPh3)2Cl2], [Pd(PPh3)4] and [Pt(PPh3)4] to afford new compounds containing a metal-2-thienyl linkage. The compound [Pd(PPh3)2(2-C4H3S)Cl] probably has trans stereochemistry.2-Bromothiophen undergoes oxidative addition with [Pd(PPh3)4] and [Pt(PPh3)4], probably via a radical mechanism. With [Pd(CO)(PPh3)3], a carbonyl inserted product is obtained. The bromo-metal(II) complexes have trans stereochemistry. The course of the reaction between 3-methyl-2-bromothiophen and Pd(PPh3)4 is more complex. Thus, there is evidence of some cis bromopalladium(II) compounds amongst the products, also there is good evidence to support the view that some isomerisation of 3-methyl-2-thienyl to 4-methyl-2-thienyl occurs during the reaction, thus giving greater molar quantities of [Pd(PPh3)2(4-CH3-2-C4H2S)Br] than can be accounted for from any initial 4-methyl-2-bromothiophen impurity.The metallation of the thiophen ring, probably in the 4-position, with palladium(II) is described for 3-theylidene-4-methylaniline.  相似文献   

19.
Treatment of Pd(PPh3)4 with phenylchlorothionoformate, PhOC(S)Cl, in dichloromethane at ?20 °C produces the phenyloxythiocarbonyl complex [Pd(PPh3)21‐C(S)OPh}(Cl)], 1 . The 31P{1H} NMR spectrum of 1 shows the dissociation of either the chloride or the triphenylphosphine ligand to form complex [Pd(PPh3)22‐SCOPh)][Cl], 2 or the dipalladium complex [Pd(PPh3)Cl]2(μ,η2‐SCOPh)2, 3 . Continuous stirring of the dichloromethane solution of 1 at room temperature for 4 h forms the dipalladinum complex [Pd(PPh3)Cl]2(μ,η2‐SCOPh)2, 3 as the final product. Respective reactions of 1 and Et2NCS2Na or dppa {bis(diphenylphosphino)amine} gives complex [Pd(PPh3){η1‐C(S)OPh}(η2‐S2CNEt2)], 4 or [Pd(PPh3){η1‐C(S)OPh}(η2‐dppa)][Cl], 5 . Complex 1 is determined by single‐crystal X‐ray diffraction and crystallized in the monoclinic space group P21 with Z = 4. The cell dimensions of 1 are as follows: a = 9.5613(1) Å, b = 33.6732(3) Å, c = 12.2979(1) Å.  相似文献   

20.
The η1‐thiocarbamoyl palladium complexes [Pd(PPh3)(η1‐SCNMe2)(η2‐S2R)] (R = P(OEt)2, 2 ; CNEt2, 3 ) and trans‐[Pd(PPh3)21‐SCNMe2)(η1‐Spy)], 4 , (pyS: pyridine‐2‐thionate) are prepared by reacting the η2‐thiocarbamoyl palladium complex [Pd(PPh3)22‐SCNMe2)][PF6], 1 with (EtO)2PS2NH4, Et2NCS2Na, and pySK in methanol at room temperature, respectively. Treatment of 1 with dppm (dppm: bis(diphenylphosphino)methane) in dichloromethane at room temperature gives complex [Pd(PPh3)(η1‐SCNMe2)(η2‐dppm)] [PF6], 5 . All of the complexes are identified by spectroscopic methods and complex 1 is determined by single‐crystal X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号