首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting from guanosine, an efficient method for the synthesis of 3′-thioguanosine (see 13 ) and of its 3′-phosphoramidothioite (see 23 ), suitable for automated incorporation into oligonucleotides, was developed. Reaction of 5′-N2-protected guanosine with 2-acetoxyisobutyryl bromide afforded stereoselectively the 2′-O-acetyl-3′-bromo-β-D -xylofuranosyl derivative 3 , which was converted to a 7 : 3 mixture of the S-acyl ribofuranosyl intermediates 5 or 6 and the 3′,4′-unsaturated by-product 4 . The S-acylated nucleosides 5 and 6 were then converted in three steps to 5′-O-(4,4′-dimethoxytrityl)-3′-S-(pyridin-2-ylthio)-3′-thioguanosine ( 11 ), which served as a common intermediate for the preparation of free 3′-thionucleoside 13 and 3′-thionucleoside 3′-phosphoramidothioite 23 .  相似文献   

2.
Via the phosphotriester approach, new structural analogs of (2′–5′)oligoadenyiates, namely 3′-deoxyadenylyl-(2′–5′)-3′-dcoxyadenylyl-(2′–ω)-9-(ω-hydroxyalkyl)adenines 18 – 21 , have been synthesized (see Scheme) which should preserve biological activity and show higher stability towards phosphodiesterases. The newly synthesized oligonucleotides 18 – 21 have been characterized by 1H-NMR spectra, TLC, and HPLC analysis.  相似文献   

3.
The syntheses of the 3′‐O‐(4,4′‐dimethoxytrityl)‐protected 5′‐phosphoramidites 25 – 28 and 5′‐(hydrogen succinates) 29 – 32 , which can be used as monomeric building blocks for the inverse (5′‐3′)‐oligodeoxyribonucleotide synthesis are described (Scheme). These activated nucleosides and nucleotides were obtained by two slightly different four‐step syntheses starting with the base‐protected nucleosides 13 – 20 . For the protection of the aglycon residues, the well‐established 2‐(4‐nitrophenyl)ethyl (npe) and [2‐(4‐nitrophenyl)ethoxy]carbonyl (npeoc) groups were used. The assembly of the oligonucleotides required a slightly increased coupling time of 3 min in application of the common protocol (see Table 1). The use of pyridinium hydrochloride as an activator (instead of 1H‐tetrazole) resulted in an extremely shorter activation time of 30 seconds. We established the efficiency of this inverse strategy by the synthesis of the oligonucleotide 3′‐conjugates 33 and 34 which carry lipophilic caps derived from cholesterol and vitamin E, respectively, as well as by the formation of (3′‐3′)‐ and (5′‐5′)‐internucleotide linkages (see Table 2).  相似文献   

4.
By automated synthesis, we prepared hybrid oligonucleotides consisting of covalently linked RNA and p‐DNA sequences (p‐DNA=3′‐deoxyribopyranose (4′→2′)‐oligonucleotides) (see Table 1). The pairing properties of corresponding hybrid duplexes, formed from fully complementary single strands were investigated. An uninterrupted ππ‐stacking at the p‐DNA/RNA interface and cooperative pairing between the two systems was achieved by connecting them via a 4′‐p‐DNA‐2′→5′‐RNA‐3′ and 5′‐RNA‐2′→4′‐p‐DNA‐2′ phosphodiester linkage, respectively (see Fig. 4). The RNA 2′‐phosphoramidites 9 – 12 , required for the formation of the RNA‐2′→4′‐p‐DNA phosphodiester linkage were synthesized from the corresponding, 3′‐O‐tom‐protected ribonucleosides (tom=[(triisopropylsilyl)oxy]methyl; Scheme 1). Analogues of the flavin mononucleotide (=FMN) binding aptamer 22 and the hammerhead ribozyme 25 were prepared. Each of these analogues consisted of two p‐DNA/RNA hybrid single strands with complementary p‐DNA sequences, designed to substitute stem/loop and stem motifs within the parent compounds. By comparative binding and cleavage studies, it was found that mixing of the two complementary p‐DNA/RNA hybrid sequences resulted in the formation of the fully functional analogues 23 ⋅ 24 and 27 ⋅ 28 of the FMN‐binding aptamer and of the hammerhead ribozyme, respectively.  相似文献   

5.
Acetylation of 2′-deoxy-5-fluoro-2′-trifluoroacetamidouridine with acetic anhydride in pyridine, followed by treatment with phosphorus pentasulfide in refluxing dioxane afforded 3′,5′-di-O-acetyl-2′-deoxy-5-fluoro-2′-trifluorothioacetamido-4-thiouridine ( 3 ). Treatment of 3 with methanolic sodium methoxide furnished 2′-deoxy-2′-trifluorothioacetamido-4-thiouridine ( 4 ), whereas its treatment with methanolic ammonia gave 2′-amino-2′-deoxy-5-fluorocytidine ( 5 ). An alternative approach for the preparation of this compound proceeding from 2′-trifluoroacetamidocytidine was unsuccessful, since the use of acetic anhydride in pyridine led to the replacement of the trifluoroacetyl function by an acetyl group, yielding an intermediate unsuitable for obtaining the target compound. The title compound was inactive at 1 × 10?4 M concentration against HeLa and leukemia L1210 cells in vitro, but inhibited the in vitro growth of E. coli cells at a concentration of 1 × 10?7 M. It was also found to be a substrate for CR/dCR deaminase partially purified from human liver, with a Km of 128 μM.  相似文献   

6.
The synthesis of 6-amino-1-(2′,3′-dideoxy-β-D -glycero-pentofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( =8-aza-7-deaza-2′,3′-dideoxyguanosine; 1 ) from its 2′-deoxyribofuranoside 5a by a five-step deoxygenation route is described. The precursor of 5a, 3a , was prepared by solid-liquid phase-transfer glyscosylation which gave higher yields (57%) than the liquid-liquid method. Ammonoloysis of 3b furnished the diamino nucleoside 3c . Compound 1 was less acid sensitive at the N-glycosydic bond than 2′,3′-dideoxyguanosine ( 2 ).  相似文献   

7.
8.
The 1′,2′-unsaturated 2′,3′-secoadenosine and 2′,3′-secouridine analogues were synthesized by the regioselective elimination of the corresponding 2′,3′-ditosylates, 2 and 18 , respectively, under basic conditions. The observed regioselectivity may be explained by the higher acidity and, hence, preferential elimination of the anomeric H–C(1′) in comparison to H? C(4′). The retained (tol-4-yl)sulfonyloxy group at C(3′) of 3 allowed the preparation of the 3′-azido, 3′-chloro, and 3′-hydroxy derivatives 5–7 by nucleophilic substitution. ZnBr2 in dry CH2Cl2 was found to be successful in the removal (85%) of the trityl group without any cleavage of the acid-sensitive, ketene-derived N,O-ketal function. In the uridine series, base-promoted regioselective elimination (→ 19 ), nucleophilic displacement of the tosyl group by azide (→ 20 ), and debenzylation of the protected N(3)-imide function gave 1′,2′-unsaturated 5′-O-trityl-3′-azido-secouridine derivative 21 . The same compound was also obtained by the elimination performed on 2,2′-anhydro-3′-azido-3′-azido-3′-deoxy-5′-O-2′,3′-secouridine ( 22 ) that reacted with KO(t-Bu) under opening of the oxazole ring and double-bond formation at C(1′).  相似文献   

9.
The (3R,5′R,6′R)‐ and (3R,5′R,6′S)‐capsanthol‐3′‐one (=3,6′‐dihydroxy‐β,κ‐caroten‐3′‐one; 4 and 5 , resp.) were reduced by different complex metal hydrides containing organic ligands. The ratio of the thus obtained diastereoisomeric (3′S)‐capsanthols 2 and 3 or (3′R)‐capsanthols 6 and 7 , respectively, was investigated. Four complex hydrides showed remarkable stereoselectivity and produced the (3′R,6′S)‐capsanthol ( 6 ) in 80 – 100% (see Table 1). The starting materials and the products were characterized by UV/VIS, CD, 1H‐ and 13C‐NMR, and mass spectra.  相似文献   

10.
The 2′-deoxyisoguanosine ( 1 ) was synthesized by a two-step procedure from 2′-deoxyguanosine ( 5 ). Amination of silylated 2′-deoxyguanosine yielded 2-amino-2′-deoxyadenosine ( 6 ) which was subjected to selective deamination of the 2-NH2 group resulting in compound 1 . Also 2′,3′-dideoxyisoguanosine ( 2 ) was prepared employing the photo-substitution of the 2-substituent of 2-chloro-2′,3′-dideoxyadenosine ( 4 ). The latter was synthesized by Barton deoxygenation from 2-chloro-2′-deoxyadenosine ( 3 ) or via glycosylation of 2,6-dichloropurine ( 12 ) with the lactol 13 . Compound 1 was less stable at the N-glycosylic bond than 2′-deoxyguanosine ( 5 ). The dideoxynucleoside 2 was deaminated by adenosine deaminase affording 2′,3′-dideoxyxanthosine ( 17 ).  相似文献   

11.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

12.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

13.
A novel class of nucleosides with the C1, atom bonded to three hetero atoms was synthesized. 2′-Thia-2′,3′-dideoxycytidine was the pilot compound of this series. (±)-β-2′-Thia-1′,3′-dideoxycytidine ( 6 ) and (±)-α-2′-thia-2′,3′-dideoxycytidine ( 7 ) were synthesized from (±)-3-mercapto-1,2-propanediol. The synthesis of the enantiomerically pure 2′-thia-2′,3′-dideoxycytidines (α-D-form, β-D-form, α-1-form and β-L-form) from optically pure (S)-(2,2-dimethyl-1,3-dioxalan-yl)methyl p-toluenesulfonate ( 8 ) and its (R)-isomer 18 was also described. The preliminary biological results showed that (+)-β-D-2′-thia-2′,3′-dideoxycytidine ( 26 ) was the most active against human hepatitis B virus with an ED50 of 3 μM.  相似文献   

14.
15.
To measure the hydrophobic character of the ribose moiety of doridosine on the adenosine receptors, 2′,3′-didehydro-2′,3′-dideoxydoridosine (2) and 2′,3′-dideoxydoridosine (3) were prepared. Initial treatment of doridosine with N,N-dimethylformamide diethylacetal, and subsequently with tert-butyldimethylsilyl chloride gave 5. Compound 5 was then reacted with 1,1′-thiocarbonyldiimidazole and the resulting thionocarbonate 6 was heated with triethyl phosphite at 135°C to afford 7. Treatment of compound 7 with tetrabutylammonium fluoride and methanolic ammonia furnished compound 2 in good yield. Compound 2 was subjected to catalytic hydrogenation affording compound 3 in 85% yield.  相似文献   

16.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

17.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

18.
Formylation of 2,2′,5′,2′-terfuran ( 1 ) with N-methylformanilide and phosphorus oxychloride gave 5-formyl-2,2′,5′,2′-terfuran ( 2 ) and 5,5′-diformyl-2,2′5′,2′-terfuran ( 3 ). Reduction of 2 and 3 afforded 5-hydroxymethyl-2,2′,5′,2′-terfuran ( 4 ) and 5,5′ dihydroxymethyl-2,2′,5′,2′-terfuran ( 5 ), respectively. Terfuran 1 reacted with phenylmagnesium bromide to give 5-(phenylhydroxymethyl)-2,2′,5′,2′-terfuran ( 6 ), and was carbonated to 5-carboxy 2,2′,5′,2′-terfuran ( 7 ) and 5,5′-dicarboxy-2,2′,5′,2′-terfuran ( 8 ). Bromination of 1 with N-bromosuccinimide gave 5,5′-dibromo 2,2′,5′,2′-terfuran ( 9 ).  相似文献   

19.
A series of novel 3′‐(alkyl(hydroxy)amino)‐2′‐fluoronucleoside analogs were prepared via conjugate addition of N‐methylhydroxylamine to various 2‐fluorobutenolides. The adducts 13a and 16 were obtained as single isomers under absolute control of stereochemistry. The crucial N‐demethylation of 23 – 25 was readily achieved by means of DDQ oxidation, followed by nitrone/oxime exchange reaction. By this procedure, a variety of alkyl groups could be efficiently introduced at the 3′‐N‐atom of the nucleoside analogs, some of which might display potentially interesting anti‐HIV properties.  相似文献   

20.
The 5′-amino-5′-deoxy-2′,3′-O-isopropylideneadenosine ( 4 ) was obtained in pure form from 2′,3′-O-isopropylideneadenosine ( 1 ), without isolation of intermediates 2 and 3 . The 2-(4-nitrophenyl)ethoxycarbonyl group was used for protection of the NH2 functions of 4 (→7) . The selective introduction of the palmitoyl (= hexadecanoyl) group into the 5′-N-position of 4 was achieved by its treatment with palmitoyl chloride in MeCN in the presence of Et3N (→ 5 ). The 3′-O-silyl derivatives 11 and 14 were isolated by column chromatography after treatment of the 2′,3′-O-deprotected compounds 8 and 9 , respectively, with (tert-butyl)dimethylsilyl chloride and 1H-imidazole in pyridine. The corresponding phosphoramidites 16 and 17 were synthesized from nucleosides 11 and 14 , respectively, and (cyanoethoxy)bis(diisopropylamino)phosphane in CH2Cl2. The trimeric (2′–5′)-linked adenylates 25 and 26 having the 5′-amino-5′-deoxyadenosine and 5′-deoxy-5′-(palmitoylamino)adenosine residue, respectively, at the 5′-end were prepared by the phosphoramidite method. Similarly, the corresponding 5′-amino derivatives 27 and 28 carrying the 9-[(2-hydroxyethoxy)methyl]adenine residue at the 2′-terminus, were obtained. The newly synthesized compounds were characterized by physical means. The synthesized trimers 25–28 were 3-, 15-, 25-, and 34-fold, respectively, more stable towards phosphodiesterase from Crotalus durissus than the trimer (2′–5′)ApApA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号