首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods are described for the unequivocal identification of the acetyl, [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document} ?O] (a), 1-hydroxyvinyl, [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b), and oxiranyl, (d), cations. They involve the careful examination of metastable peak intensities and shapes and collision induced processes at very low, high and intermediate collision gas pressures. It will be shown that each [C2H3O]+ ion produces a unique metastable peak for the fragmentation [C2H3O]+ → [CH3]++CO, each appropriately relating to different [C2H3O]+ structures. [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions do not interconvert with any of the other [C2H3O]+ ions prior to loss of CO, but deuterium and 13C labelling experiments established that [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b) rearranges via a 1,2-H shift into energy-rich leading to the loss of positional identity of the carbon atoms in ions (b). Fragmentation of b to [CH3]++CO has a high activation energy, c. 400 kJ mol?1. On the other hand, , generated at its threshold from a suitable precursor molecule, does not rearrange into [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH], but undergoes a slow isomerization into [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] via [CH2\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}HO]. Interpretation of results rests in part upon recent ab initio calculations. The methods described in this paper permit the identification of reactions that have hitherto lain unsuspected: for example, many of the ionized molecules of type CH3COR examined in this work produce [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] ions in addition to [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] showing that some enolization takes place prior to fragmentation. Furthermore, ionized ethanol generates a, b and d ions. We have also applied the methods for identification of daughter ions in systems of current interest. The loss of OH˙ from [CH3COOD] generates only [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OD]. Elimination of CH3˙ from the enol of acetone radical cation most probably generates only [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions, confirming the earlier proposal for non-ergodic behaviour of this system. We stress, however, that until all stable isomeric species (such as [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^{\rm + } $\end{document}?C:]) have been experimentally identified, the hypothesis of incompletely randomized energy should be used with reserve.  相似文献   

2.
The gas phase ion-molecule reactions in positively and negatively ionized germane/diborane mixtures have been studied by ion trap mass spectrometry. Reaction sequences and rate constants for the most interesting processes have been determined. In positive ionization, formation of Ge-B bonds exclusively occurs through condensation reactions of B(n)H(m)(+) ions with germane, followed by H(2) or BH(3) loss. No reactions of ions from germane with B(2)H(6) were observed under the experimental conditions used here. In negative ionization, the Ge(n)H(m)(-) (n = 1, 2) ion families react with diborane to yield the Ge(n)B(p)H(q)(-) (p = 1, 2) ions, again via dehydrogenation and BH(3) loss, while diborane anions proved to be unreactive. In both positive and negative ionization, Ge-B ions reach appreciable abundances. The present results afford fundamental information about the intrinsic reactivity of gas-phase ions and provide valuable indications about the first nucleation steps ultimately leading to amorphous Ge and B-doped semiconductor materials by chemical vapor deposition methods.  相似文献   

3.
The activation energies for the abstraction of a hydrogen atom from each of several hydrocarbons has been calculated using the AM1 molecular orbital method. The calculated barrier for the abstraction from methane is 15.5 kcal/mole, in good agreement with experiment. Calculated barriers for other abstractions are reasonably good. They are much improved when the calculated intrinsic barrier is used together with the experimental heats of reaction in a modified formulation of Marcus theory.  相似文献   

4.
The configurational and conformational assignments of the carbonyl group in the Z- and E-1-(3-substituted-5,5-dimethyl-2-cyclohexen-1-ylidene)-2-butanones are carried out using only the through-space effects of the carbonyl group. It is demonstrated that, regardless of the Z- or E-configuration or the nature of the substituent in position 3, the conformation of the carbonyl group is always s-cis.  相似文献   

5.
Two different chemical methods have been used to form glutathione radical cations: (1) collision-induced dissociations (CIDs) of the ternary complex [Cu(II)(tpy)(M)]˙(2+) (M = GSH, tpy = 2,2':6',2'-terpyridine) and (2) homolysis of the S-NO bond in protonated S-nitrosoglutathione. The radical cations, M˙(+), were trapped and additional CIDs were performed. They gave virtually identical CID spectra, suggesting a facile interconversion between initial structures prior to fragmentation. DFT calculations at the B3LYP/6-31++G(d,p) level of theory have been used to study interconversion between different isomers of the glutathione radical cation and to examine mechanisms by which these ions fragment. The N-terminal α-carbon-centred radical cation, strongly stabilized by the captodative effect, is at the global minimum, which is 8.5 kcal mol(-1) lower in enthalpy than the lowest energy conformer of the S-centred radical cation. The barrier against interconversion is 18.1 kcal mol(-1) above the S-centred radical.  相似文献   

6.
《Tetrahedron》1986,42(22):6235-6244
Mass spectrometric techniques are now used extensively for the study of gas-phase radical cation chemistry. The generation and structural properties, the unimolecular and bimolecular chemistry of some representative radical cation systems, and the methods of study are reviewed. The structure of the ionmolecule adduct produced in the reaction of the benzene radical cation and neutral 1,3-butadiene was investigated by collisionally stabilizing the adduct and then acquiring its collision-activated decomposition spectrum. The CAD spectrum of the adduct changes dramatically as a function of the degree of collisional stabilization. This observation is interpreted in terms of two distinct structures for the adduct. The species that is stabilized at 0.7 Torr has a CAD spectrum similar to the 2-phenyl-2-butene radical cation. The second structure, stabilized at 0.1 Torr, has a CAD similar to that of 1-methylindan. The results of these experiments are interpreted in terms of a two-step cycloaddition mechanism for the formation of the 1-methylindan radical cation.  相似文献   

7.
Quantum chemical calculations were carried out to study the interaction of hydrogen sulfide with molecular oxygen in the gas phase. The basic mechanism, the rates of reaction, and the potential energy surface were calculated. Isomers and transition states that connect the reactants with intermediates and products of reaction were identified using the G2 method and B3LYP/6-311+G(3df,2p) functional. Hydrogen abstraction to form HO2 + SH is the dominant product channel and proceeds through a loose transition state well-described at the level of calculation employed. The temperature dependence of the rate coefficient in the range 300-3000 K has been determined on the basis of the ab initio potential energy surface and with variational transition-state theory. The reaction is 169.5 kJ mol(-1) endothermic at 0 K with a rate constant given by 2.77 x 10(5) T(2.76) exp(-19 222/T) cm3 mol(-1) s(-1) and should proceed slowly under atmospheric thermal conditions, but it offers a route to the initiation of H2S combustion at relatively low temperatures.  相似文献   

8.
Metastable peak characteristics, ionization and appearance energy data and isotopic labelling experiments have been applied to a study of the fragmentation behaviour of the molecular ions of the isomeric C4H6O2C acids, cis and trans-crotonic acids, methacrylic acid, butenoic acid and cyclopropane carboxylic acid. Prior to the losses of H2O and CH3, all the metastable molecular ions rearrange to [cis-crotonic acid]+? ions. Loss of H2O, which generates a composite metastable peak, is proposed to yield vinylketene and/or cyclobutenone molecular ions. Detailed mechanisms are presented for the isomerizations of the various molecular ions and for the above fragmentations. Ionized 3-butenoic and cyclopropane carboxylic acids display a major loss of CO from their metastable ions, a minor process in the other isomers. The metastable peaks consist of two components and these are ascribed to the formation of propen-1-ol and allyl alcohol as daughter ions. Some comparative data are presented for the isomeric C5H8O2 acids, tiglic acid, angelic acid and senecioic acid.  相似文献   

9.
The gas-phase ion chemistry of silane-allene-ammonia, germane-allene (or propyne)-ammonia (or phosphine) systems was studied by ion trap mass spectrometry. Reaction sequences were determined and rate constants were measured for the main processes observed. The mixture containing silane displays higher reactivity with respect to that with germane. Comparison with analogous systems provides useful information about the reactivity of different hydrocarbon molecules and the different affinities of silicon and germanium towards nitrogen and phosphorus. The most interesting product ions observed are those containing Si (or Ge), C and N (or P) elements together, as these ion species may be considered precursors of doped amorphous carbides, which are widely used in semiconductor devices.  相似文献   

10.
The 270 MHz n.m.r. spectra of phosphoserine (PSer) have been measured and completely analysed for seven pD values. The resulting vicinal coupling constants 3J(HαHβ) and 3J(PHβ) are used to discuss the conformations of PSer with respect to the (Hα)? Cα? Cβ? (O) and (Cα)? Cβ? O? (P) bond axes. The all-trans conformer predominates for all pD values, with its fractional population being minimal at pD values close to neutrality. The Cβ? O bond rotamer populations agree reasonably well with those obtained from 13C investigations.  相似文献   

11.
From a combination of isotopic substitution, time-resolved measurements and sequential collision experiments, it was proposed that whereas ionized methyl acetate prior to fragmentation rearranges largely into \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 \mathop {\rm C}\limits^ + ({\rm OH}){\rm O}\mathop {\rm C}\limits^{\rm .} {\rm H}_2 $\end{document}, in contrast, methyl propanoate molecular ions isomerize into \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_2 {\rm CH}_2 \mathop {\rm C}\limits^ + ({\rm OH}){\rm OCH}_3 $\end{document}. Metastably fragmenting methyl acetate molecular ions are known predominantly to form H2?OH together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}, whereas ionized methyl propanoate largely yields H3CO˙ together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm CH}_2 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}. The observations were explained in terms of the participation of different distonic molecular ions. The enol form of ionized methyl acetate generates substantially more H3CO˙ in admixture with H2?OH than the keto tautomer. This is ascribed to the rearrangement of the enol ion to the keto form being partially rate determining, which results in a wider range of internal energies among metastably fragmenting enol ions. Extensive ab initio calculations at a high level of theory would be required to establish detailed reaction mechanisms.  相似文献   

12.
The structures of the six isomers of 2,3,5,6-tetramethyl-morpholine have been determined by means of proton nuclear magnetic resonance studies at 100 MHz. The spectra have been analysed in terms of spin–spin coupling constants and population distributions of the possible conformers at low temperatures. Also included in this paper are results from n.m.r. studies on the six 4-benzyl-2,3,5,6-tetramethylmorpholine derivatives, which give information about the stereochemistry of the methyl groups α to the amine group.  相似文献   

13.
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH(3)C≡CCH(3)) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH(3) loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP+2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C(4) side-chain, followed by cyclization and/or low-energy H atom β-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph˙)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH(3) loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).  相似文献   

14.
The 70 eV negative ion mass spectra of some simple aromatic and aliphatic thio and dithio esters are discussed. A characteristic fragmentation process, a rearrangement analogous to the nitro-nitrite conversion of aromatic nitro compounds, is observed for aromatic thio esters.  相似文献   

15.
The conformation of some 2-σ-1,3,2-dioxaphospholanes (σ=OAlkyl, CI) is studied. The determination of the 2J(POC) and 3J(POCC) coupling constants, which are influenced by the bulk of the alkoxy group, is a means of obtaining information about the rotation around the P? OR bond, which is dependent on steric interactions between the phosphorus lone pair, the alkoxy group and the substituents on the ring. When σ is a tert-butoxy group, a direct ‘through-space’ interaction is found between the phosphorus atom and one of the primary carbons of the OR group. If there is no substituent on the ring, the 31P chemical shifts are little affected by changes in OR; a diamagnetic effect is observed, however, in the case of the tert-butoxy group which is enhanced for the 4,4,5,5-tetramethyl derivatives.  相似文献   

16.
The ionization potentials for the stereoisomers of trans-fused 2- and 3-methylbicyclo[4.4.0]decanes and the appearance potentials for the ions at m/e 137 [M–CH3]+, 109, 96, 95 and 82 were measured by the electron impact method. The ionization potentials and appearance potentials of the [M–CH3]+ ions appeared to be equal for each of the epimers. Appearance potentials of the other ions were always lower for the less stable epimer. No quantitative correlation was observed between the difference in the appearance potentials for any ions and the differences in enthalpies of the ground states.  相似文献   

17.
18.
The reactions of metastable decomposing methyl acetoacetate (a mixture of keto a ad enol tautomers) are reported and discussed. The unimolecular fragmentations of the tautomers are different. The metastable decomposing radical cation of the keto form displays four specific ions: [M –CO]+˙, [M – CH2O]+˙, [M – CH2CO]+˙ and m/z 43. The results derived from D-, 13C- and 18O-labelled precursors together with thermochemical data have been used to study the mechanisms. Experimental results indicate that an unexpected isomerization occurs before dissociation. It formally corresponds to oxygen atom permutation of the two carbonyl groups without participation of the carbon atoms. This remarkable process is interpreted in terms of a mechanism involving ion-molecule complexes.  相似文献   

19.
《Tetrahedron》1986,42(14):3807-3812
Kinetic studies on photosensitized oxygenation of 1,3,5-triaryl-2-pyrazolines show that an electron-transfer from the pyrazoline to singlet oxygen may take place to give a cation radical and superoxide ion pair. The reaction of pyrazoline cation radicals with superoxide ion shows the same product distribution with singlet oxygenation.  相似文献   

20.
The positive ion mass spectrum of allogibberic acid was examined and fragmentation routes involving the carbon skeleton are proposed on the basis of mass measurements and metastable ion observations. The results are compared with the mass spectra of 3-hydroxy-epiallogibberic acid, as well as gibberellin A3 (GA3), 3-epi-GA3, 3-dehydro-GA3 and iso-GA3, the latter compounds all being capable of undergoing aromatization of ring A giving a key ion corresponding to the molecular ions of the allogibberic acid and 3-hydroxy-epiallogibberic acid models, respectively. All the gibberellin derivatives investigated show the same fragmentation of the skeleton. Thus, the behaviour under electron impact of the GA3 type gibberellins follows a general pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号