首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The template condensation of 6,6″-bis(-methylhydrazino)-2,2′: 6′,2″-terpyridines L2 and L3 with 2,6-pyridinedialdehyde may give a number of different products depending upon the metal ion which is used. In the presence of nickel(II) the products are either the nickel(II) complexes of the 18-membered ring macrocycles L4 or L5 or the free macrocycles. The metal ion acts as a transient template and is removed in a chloride ion specific demetallation. The use of dimethyltin(IV) as a template results in the formation of complexes of the ring contracted macrocycles L6 or L7.  相似文献   

3.
4.
Two approaches to the formation of ruthenium(II) complexes containing ligands with conjugated 2,2′:6′,2″-terpyridine (tpy), alkynyl and bithienyl units have been investigated. Bromination of 4′-(2,2′-bithien-5′-yl)-2,2′:6′,2″-terpyridine leads to 4′-(5-bromo-2,2’-bithien-5′-yl)-2,2′:6′,2″-terpyridine (1), the single crystal structure of which has been determined. The complexes [Ru(1)2][PF6]2 and [Ru(tpy)(1)][PF6]2 have been prepared and characterized. Sonogashira coupling of the bromo-substituent with (TIPS)CCH did not prove to be an efficient method of preparing the corresponding complexes with pendant alkynyl units. The reaction of 4′-ethynyl-2,2′:6’,2″-terpyridine with 5-bromo-2,2′-bithiophene under Sonogashira conditions yielded ligand 2, and the heteroleptic ruthenium(II) complex [Ru(2)(tpy)][PF6]2 has been prepared and characterized.  相似文献   

5.
6.
Formylation of 2,2′,5′,2′-terfuran ( 1 ) with N-methylformanilide and phosphorus oxychloride gave 5-formyl-2,2′,5′,2′-terfuran ( 2 ) and 5,5′-diformyl-2,2′5′,2′-terfuran ( 3 ). Reduction of 2 and 3 afforded 5-hydroxymethyl-2,2′,5′,2′-terfuran ( 4 ) and 5,5′ dihydroxymethyl-2,2′,5′,2′-terfuran ( 5 ), respectively. Terfuran 1 reacted with phenylmagnesium bromide to give 5-(phenylhydroxymethyl)-2,2′,5′,2′-terfuran ( 6 ), and was carbonated to 5-carboxy 2,2′,5′,2′-terfuran ( 7 ) and 5,5′-dicarboxy-2,2′,5′,2′-terfuran ( 8 ). Bromination of 1 with N-bromosuccinimide gave 5,5′-dibromo 2,2′,5′,2′-terfuran ( 9 ).  相似文献   

7.
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized.  相似文献   

8.
Rh(II) acetate binuclear complexes have been reduced by gamma rays to Rh(I) complexes when 2,2′-bipyridine, 2,2′:6′,2″-terpyridine or 1,10-phenantroline ligands are present in aqueous methanol systems. These complexes exist in several forms possessing different absorption spectra. Their concentration depends on the ratio of the initial concentration of the ligands to Rh(II).  相似文献   

9.
The temperature dependence of the emission lifetime of the series of complexes Ru(bpy)n(4,4′-dpb) (bpy = 2,2′bipyridine, 4,4′-dpb = 4,4′-diphenyl-2,2′-bipyridine) has been studied in propionitrile/butyronitrile (4:5 v/v) solutions in the range 90–293 K. The obtained photophysical parameters show that the energy separation between the metal-to-ligand charge tranfer (3MLCT) emitting level and the photoreactive metal-centered (3MC) level changes across the series (ΔE = 3960, 4100, 4300, and 4700 cm?1 for Ru(bpy)), Ru(bpy)2(4,4′-dpb)2+, Ru(bpy)(4,4′-dpb), and Ru(4,4′-dpb), respectively, where ΔE is the energy separation between the minimum of the 3MLCT potential curve and 3MLCT – 3MC crossing point. Comparison between spectral and electrochemical data indicated that the changes in ΔE are due to stabilization of the MLCT levels in complexes containing 4,4′-dpb with respect to Ru(bpy)2+3. The photochemical data for the same complexes (as I? salts) have been obtained in CH2Cl2 in the presence of 0.01M Cl? upon irradiation at 462 nm. The complexes containing 4,4′-dpb are more photostable than Ru(bpy). Comparison between the data for thermal population of the 3MC photoreactive state and those for photochemistry indicated that the overall photochemical process is governed by (i) a thermal redistribution between the emitting and photoreactive excited states, and (ii) mechanistic factors, likely related to the size of the detaching ligand.  相似文献   

10.
In the structures of deca­fluoro­diphenyl­amine, C12HF10N, and its 1:1 cocrystal with diphenyl­amine, C12HF10N·C12H11N, the mol­ecules are located on special positions of C2 symmetry. The NH groups are not involved in hydrogen bonding and the usual face‐to‐face stacking inter­actions between phenyl and penta­fluoro­phenyl rings are not observed in the cocrystal.  相似文献   

11.
The bulk atom transfer radical polymerization (ATRP) of styrene or methyl acrylate was carried out in the presence of CuCl or CuBr complexed by equimolar amounts of 2,2′: 6′,2″-terpyridines (tpy) as ligands. Uncontrolled reactions were observed in the presence of unsubstituted ligands whereas relatively fast but controlled polymerization of styrene and methyl acrylate was observed for CuCl and CuBr complexed by tpy with three 5-nonyl substituents (tNtpy). Molecular weights evolved linearly with conversion and polymers with relatively low polydispersities were formed (Mw/Mn < 1.2).  相似文献   

12.
13.
By two different routes, 4,4′′′′‐azobis[2,2′: 6′,2″‐terpyridine] was synthesized. Its ruthenium complexes show interesting metal‐to‐ligand charge transfer (MLCT) absorption maxima in the electronic spectra. They represent the first ruthenium complexes of terpyridine units to give blue solutions.  相似文献   

14.
In the nearly planar title compound, C15H10IN3, the three pyridine rings exhibit transoid conformations about the interannular C—C bonds. Very weak C—H...N and C—H...I interactions link the molecules into ribbons. Significant π–π stacking between molecules from different ribbons completes a three‐dimensional framework of intermolecular interactions. Four different packing motifs are observed among the known structures of simple 4′‐substituted terpyridines.  相似文献   

15.
This review deals with the synthesis and applications of 2,2′:6′,2″‐terpyridines which are functionalized with thiophene ring, directly linked to the terpyridine core or via a spacer. Two main methodologies were used, ring closure of diketo‐derivatives and cross coupling reactions. The obtained compounds find applications in various fields especially in material sciences such as solar cells or macromolecular sciences.  相似文献   

16.
The title compound, C17H13N3, is a versatile precursor for polymeric ter­pyridine derivatives and their metal complexes. The mol­ecule has transoid and near‐coplanar pyridine rings. However, the vinyl group is forced out of the plane of the terpyridyl moiety by a close H?H contact.  相似文献   

17.
The luminescent and mesomorphic properties of a series of metal complexes based on hexacatenar 2,2′:6′,2′′‐terpyridines are investigated using experimental methods and density functional theory (DFT). Two types of ligand are examined, namely 5,5′′‐di(3,4,5‐trialkoxyphenyl)terpyridine with or without a fused cyclopentene ring on each pyridine and their complexes were prepared with the following transition metals: ZnII, CoIII, RhIII, IrIII, EuIII and DyIII. The exact geometry of some of these complexes was determined by single X‐ray diffraction. All complexes with long alkyl chains were found to be liquid crystalline, which property was induced on complexation. The liquid‐crystalline behaviour of the complexes was studied by polarising optical microscopy and small‐angle X‐ray diffraction. Some of the transition metal complexes (for example, those with ZnII and IrIII) are luminescent in solution, the solid state and the mesophase; their photophysical properties were studied both experimentally and using DFT methods (M06‐2X and B3LYP).  相似文献   

18.
The enantiomers of the title compound, the important photochromic material (RS)-1b, have been enriched semipreparatively by liquid chromatography. As a consequence, we were able to determine the barrier of the thermal interconversion (R)-1b(S)-1b via time-dependent polarimetry, amounting to ΔG=85.9 kJ/mol at 22.0°C in d6-DMSO (Table 2). The thermal equilibration of the corresponding merocyanine 2b was monitored in d6-DMSO by time-dependent 1H NMR, resulting in ΔG1=102.8 and ΔG2=92.0 kJ/mol at 22°C (Table 1). This means that, starting from (RS)-1b, the opened isomer 2b is attained by a slow reaction (ΔG1=102.8 kJ/mol, Fig. 4). Therefore, the merocyanine 2b cannot be identified with the intermediate required for the fast process of C(sp3)–O bond cleavage (ΔG=85.9 kJ/mol) upon the above enantiomerization of (RS)-1b. Apparently, these two thermal isomerizations (Fig. 4) are independent of each other. The structure of the unknown intermediate of the interconversion (R)-1b(S)-1b must therefore differ from the known one of merocyanine 2b.
Table 1. Equilibration between spiro compounds (RS)-1 and merocyanines 2 at 22°C, measured by time-dependent UV absorptions[3] for (RS)-1a2a and by time-dependent 1H NMR intensities for the other compounds

Article Outline

1. Introduction
2. Equilibration of the merocyanine 2b with the spiro compound (RS)-1b
3. Preparative separation and characterization of the enantiomers of the spiro compound (RS)-1b
4. Enantiomerization of the spiro compounds (R)- and (S)-1b
5. Discussion of the two different isomerizations investigated
6. Experimental
6.1. General methods
6.2. (±)-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b[43]
6.3. (+)436-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b
6.4. (−)436-6-Nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1b
6.5. 4-Nitro-2-[(E)-2′-(1′′,3′′,3′′-trimethyl-3H′′′-2′′-indoliumyl)-1′-ethenyl]-1-phenolate 2b[19]
Acknowledgements
References

1. Introduction

Many derivatives of 1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] 1a (Scheme 1) are of interest because of their photochromism.[2] The parent molecule 1a can be transformed photochemically into the merocyanine 2a which isomerizes thermally with a very high rate back to 1a.[3] Therefore, unsubstituted 1a has no practical value with respect to photochromism. This situation changes upon the introduction of a nitro group into the 6-position: the title compound 1b has probably been cited in the literature most often among all photochromic materials. The corresponding merocyanine 2b is obtained by irradiation and reverts to the equilibrium mixture (Scheme 1) consisting predominantly of the spiro compound 1b. The rate of isomerization of 2b is much lower than that of the 2a1a reversal.[3, 4, 5, 6, 7 and 8] Although analogs have now been found which are more stable to light than 1b, the latter has been significant for the development of practical applications of photochromism and continues to be significant for basic research,[2, 9 and 10] e.g. with respect to 1b chemically bonded to another molecule. A further nitro group in the 8-position again changes the properties: only a very small amount of the spiro compound 1c appears in the thermal equilibrium[11 and 12] ( Scheme 1) in dipolar aprotic solvents, which means that the observed photochromism is a reversible one with limited applicability.  相似文献   

19.
The synthesis of generational dendritic oligothiophenes (DOTs) has been successfully achieved by a divergent/convergent approach that involves halogenation, boronation, and palladium‐catalyzed Suzuki coupling reactions. The key point in the presented synthetic approach is the use of trimethylsilyl (TMS) protecting groups, which allow for the core‐lithiation and subsequent boronation of the dendrons and for the peripheral ipso‐substitution with iodine monochloride or N‐bromosuccimide. In addition, the TMS protecting groups can be completely removed by using tetrabutylammonium fluoride, thus yielding only‐thiophene‐based dendrons and dendrimers. Due to their highly branched structure, all these synthesized DOTs are soluble in organic solvents. Chemical structures were confirmed by NMR spectroscopic, mass spectrometric, and elemental analysis. Concentration‐dependent 1H NMR spectroscopic investigations revealed that the higher generation compounds tend to aggregate in solution. Such an aggregation behavior was further confirmed by measuring with MALDI‐TOF MS. Both MALDI‐TOF MS and gel‐permeation chromatography (GPC) analyses confirmed the monodispersity of the DOTs. Furthermore, GPC results revealed that these DOT molecules adopt a condensed globular molecular shape. Their optical and electronic properties were also investigated. The results indicated that these DOTs comprise various conjugated α‐oligothiophenes with different chain lengths, which results in the higher generation compounds showing broad and featureless UV/Vis absorption spectra and ill‐defined redox waves.  相似文献   

20.
The preparation of 1′-and 3′-amino-5′,6′,7′,8′-tetrahydro-2′-acetonaphthones (IIIa and IIIb) is described, by reduction of the low temperature nitration products of 5′,6′,7′,8′-tetrahydro-2′-acetonaphtone (I). The structures of the nitro isomers (IIa and IIb), and the reduction products, IIIa and IIIb, were elucidated spectroscopically. By known reactions, a series of new heterocyclic compounds prepared from the o-aminoketones, IIIa and IIIb, resulted in two series of new heterocyclic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号