首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative Ligands. XXVI. M(CO)4 L-Complexes (M ? Cr, Mo, W) of the Chelating Ligands Me2ESiMe2(CH2)2E′ Me2 (Me ? CH3; E ? P, As; E′ ? N, P, As) The reaction of M(CO)4NBD (NBD = norbornadiene; M ? Cr, Mo, W) with the ligands Me2ESiMe2(CH2)2E′ Me2 yields the chelate complexes (CO)4M[Me2ESiMe2]) for E,E′ ? P, As, but not for E and /or E′ ? N. The NSi group is not suited for coordination because of strong (p-d)π-interaction. In the case of the ligands with E ? P or As and E′ ? N chelate complexes can be detected in the reaction mixture, but isolable products are complexes with two ligands coordinated via the E donor group. The new compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations. The spectroscopic data are also used to deduce the coordinating properties of the ligands. X-ray diffraction studies of the molybdenum complexes (CO)4Mo[Me2ESiMe2(CH2)2AsMe 2] (E ? P, As) in accord with the observed coordination effects show only small differences between SiE and CE donor functions. Attempts to use the ligands Me2ESiMe2(CH2)2AsMe2 (E ? P, As) for the preparation of Fe(CO)3L complexes result in the fission of the SiE bonds and the formation of the binuclear systems Fe2(CO)6(EMe2)2 (E ? P, As) together with the disilane derivative [Me2Si(CH2)2AsMe2]2.  相似文献   

2.
Preparation of Chelating Ligands of the Type Me2XSiMe2CH2X′Me2 (Me = CH3; X, X′ = N, P and/or As) Chelating Ligands of the general type Me2XSiMe2CH2X′Me2 (Me = CH3; X, X′ = N, P As) are obtained from ClSiMe2CH2Cl by the following reactions (see “Inhaltsübersicht”). The new compounds have been characterized by analytical and spectroscopic methods (IR, NMR, MS).  相似文献   

3.
4.
Chelate Complexes of the Type M(CO)4(Me2XGeMe2CH2X′Me2) (M) = Cr, Mo, W; X, X′ = N, P, As; Me = CH3) The ligands (Me2)XGeMe2CH2X′Me2 (M) = Cr, Mo, W) react with M(CO)4norbor (norbor = Norbornadiene) (M = Cr, Mo, W) yielding the chelate complexes M(CO)4(Me)2XGeMe2CH2X′Me2). compounds of low thermal stability are formed with the ligands (Me2NGeMe2CH2X′Me2 because of the weak donor ability of the GeNMe2 group and with Me2AsGeMe2CH2NMe2 caused by strong steric ring tension. The new compounds are characterized by analytical and spectroscopic (n.m.r., i.r., m.s.) investigations.  相似文献   

5.
6.
Perfluoromethyl Element Ligands. XXX. Reactions of the Metal Hydridesπ-C5H5(CO)3MH (M = Cr, Mo, W) with Organoelement-Element Compounds of the Type R2 EER2 and RE′ ′E ′R (E = P, As; E′ = S, Se; R = CH3, CF3) Cleavage reactions of R2EER2 and RE′E′R, respectively, (E = P, As; E′ = S, Se; R = CH3, CF3) with complexes π-C5H5(CO)3MH (M = Cr, Mo, W) are used (a) to prepare known and novel complex subsituted phosphanes, arsanes, sulfanes, or selanes π-C5H5(CO)3MER2 (I) and π-C5H5(CO)3ME′R (II), respectively, (b) to study the reactivity trends as a function of E, E′, R, and M (see Inhaltsübersicht). The tendency observed for the formation of the binuclear complexes [π-C5H5(CO)2MER2]2 and [π-C5H5(CO)2ME′R]2, respectively, in following reactions of I and II increases in the series W ? Mo ≤ Cr and SeCF3 < As(CF3)2 < SCF3 ≈ P(CF3)2 < SeMe < AsMe2 ?; PMe2 ≈ SMe.  相似文献   

7.
Reactive E=C(p‐p)π‐Systems. 54 [1] Reactions of perfluoro‐2‐arsapropene, F3CAs=CF2 (1), with H‐acidic compounds Me2EH (E = N, P, As) and MeE′H (E′ = O, S, Se) The reactions of the perfluoro‐2‐arsapropene ( 1 ) with H‐acidic compounds Me2EH (E = N, P, As) and MeE′H (E′ = O, S, Se), respectively, proceed via addition to the As=C double bond yielding either secondary arsanes F3C(H)AsCF2X (X = NMe2, PMe2, OMe, SMe) or AsX derivatives (X = AsMe2, SeMe). Me2‐AsH is obviously a border case nucleophile because, besides the AsX derivative as main product, small amounts of the arsane are formed indicative for the reverse addition pathway. With the strong base Me2NH, the addition is followed immediately by HF elimination producing the fairly stable arsaalkene F3CAs=C(F)NMe2 ( 4 ) which had already been obtained by reaction of HAs(CF3)2 with three equivalents of Me2NH. The novel rather labile compounds were identified by spectroscopic (NMR, GC/MS) investigations. – Quantum chemical DFT calculations [B3LYP/6‐311+G(d,p)] were carried out to determine the relative energy of the isomeric products and the thermodynamics of the addition reactions.  相似文献   

8.
Perfluoromethyl Element Ligands. XLII Binuclear Complexes of the Type Mn2(CO)8E(CF3)2E′R (E = P, As; E′ = S, Se, Te): Synthesis and Structure Complexes of the type Mn2(CO)8E(CF3)2E′R, in which the groups E(CF3)2 and E′R act as bridging ligands, are prepared either by direct reactions of Mn2(CO)10 with (F3C)2EE′R (E = P, As; E′ = S, Se, Te) or by substitution of the iodine bridge in the representatives Mn2(CO)8 E(CF3)2I (E = P, As) with mercury compounds Hg(E′R)2. As a rule the binuclear systems contain four‐membered heterocycles (Mn2EE′). However, the reactions of Mn2(CO)10 with (F3C)2PE′P(CF3)2 (E′ = S, Se) yield five‐membered rings [Mn2P(E′P)]. The compounds have been characterized by spectroscopic (NMR, IR, MS), analytic (C, H) and X‐ray diffraction investigations. The pyramidal Mn2E′R fragment shows dynamic behaviour in solution via inversion between two identical structures.  相似文献   

9.
Perfluoromethyl-Element-Ligands. XVII. Formation of Adducts of MenE(CF3)3?n Ligands with BX3 Compounds (Me = CH3; E = P, As, Sb; n = 0–3; X = H, CH3, Hal) The ligands MenE(CF3)3?n (Me = CH3; E = P, As, Sb; n = 0–3) have been prepared (partly using new methods) and studied by n.m.r. spectroscopy (1H, 19F, 31P, 13C). In order to deduce their relative donor strength their reactions with the Lewis acids “BH3”, BMe3, BMe3, Me2BBr, and BX3 (X = F, Cl, Br) have been studied. Control of adduct formation occurs by n.m.r. spectroscopy (1H, 19F). The following series of decreasing basicity or acidity are obtained:   相似文献   

10.
Perfluoromethyl Element Ligands. XLI. [1] Compounds of the Type (F3C)2EE′R with Pseudohalide Character (E = P, As; E′ = S, Se, Te) Perfluoromethyl phosphorus and -arsenic compounds of the type (F3C)2EE′R (E = P, As; E′ = S, Se, Te; R = organic group) are prepared either by dismutation (metathesis) of E2(CF3)4 with (RE′)2 or by reaction of the iodine compounds (F3C)2EI with mercury(II) organosulfanides Hg(SR)2 and characterized by spectroscopic (1H, 19F, 31P-NMR; IR; MS) as well as analytical investigations (C, H).  相似文献   

11.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

12.
W(CO)5L complexes (L = R2EER′2, R2EE′R; R, R′ = CH3, CF3; E = P, As; E′ = S, Se, Te) have been prepared by reaction of W(CO)5·THF with L at room temperature or by redistribution reaction of W(CO)5E2Me4 with E2(CF3)4 or E′2Me2 as well as by cleavage of E2(CF3)4 with W(CO)5EMe2H. The new compounds were characterized by analytical and spectroscopic (IR, NMR, MS) methods; by comparison with of the data of free and coordinated ligands the effects of complexation are studied.  相似文献   

13.
Atrane-analogous Compounds. III. Atrane-analogous Compounds of the Type Me2DCH2CH2OSi(Me)(OCH2 CH2)2 D′Me (I) and Type Me2DCH2CH2OSi(Me) OCH2CH22D″Me2 (II) (Me?CH3; D, D′, D″?N, P, As) Atrane analogous compounds I and II (Abb. 1) have been prepared by condensation reactions of trifunctional silanes RSiX3 (X?Cl, OEt, NMe2) with N-methyldiethanolamine, ß-chloroethanol, ß-dimethylaminoethanol, and ß-dimethylarsanoethanol according to eqn. (1) to (3) and reaction schemes of Figs. 2 and 3, respectively. For compounds of type I weak N→Si adduct bonding is indicated for the MeN-donor of the eight-membered ring by significant shifts of the MeNCH2 and OCH2 proton n.m.r. signals. For compounds of type II there is no n.m.r. evidence for D→Si interactions. In spite of equal Lewis acidity of the Si atoms differences in adduct formation are observed for cage, ring, and acyclic podand systems, which can be explained mainly by entropy effects connected to the formation of five-membered rings.  相似文献   

14.
Co-ordinative Properties of Chelating Ligands of the Type Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) The reactions of the ligands L ? Me2XSi(Me2)CH2XMe2 (X ? N and/or P; Me ? CH3) with M(CO)6 and M(CO)4norbor (norbor ? norbornadiene) (M ? Cr, Mo), respectively, yield derivatives of the types M(CO)5L, M(CO)4L, and M(CO)4L2, respectively. M(CO)5L compounds are formed from the hexacarbonyls with Me2NSiMe2CH2PMe2, whereas the ligand Me2NSiMe2CH2NMe2 does not afford analogous derivatives under the same conditions. Even on substitution of the diene-ligand in M(CO)4norbor by Me2NSiMe2CH2PMe2 the chelate complexes M(CO)4NMe2SiMe2CH2PMe2 are not obtained, but the cis-disubstituted products M(CO)4[PMe2CH2SiMe2NMe2]2 with phosphorus acting as donor atom are produced. The ligands Me2PSiMe2CH2XMe2(X ? N, P) give the chelate complexes M(CO)4PMe2SiMe2CH2XMe2 in high yields. The new compounds were identified by analytical and spectroscopic (PMR, IR, mass spectra) methods.  相似文献   

15.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

16.
Studies of Polyhalides. 22. On Dimethyldiphenylammoniumpolyiodides (Me2Ph2N)In with n = 3, 13/3, 6, and 8: Preparation and Crystal Structures of a Triiodide (Me2Ph2N)I3, Tridecaiodide (Me2Ph2N)3I13, Dodecaiodide (Me2Ph2N)2I12, and Hexadecaiodide (Me2Ph2N)2I16 The new compounds [(CH3)2(C6H5)2N]I3, [(CH3)2(C6H5)2N]3I13, [(CH3)2(C6H5)2N]2I12 and [(CH3)2(C6H5)2N]2I16 have been prepared by the reaction of dimethyldiphenylammonium iodide [(CH3)2(C6H5)2N]I with iodine I2 in ethanol. Their crystal structures have been determined by single crystal X-ray diffraction methods. The structure of the triiodide may be described as a layerlike packing of pairs of nearly linear symmetric anions and tetraedral cations. The tridecaiodide forms zig-zag chains of iodide ions and iodine molecules with the iodide ion also weakly coordinated by two pentaiodide groups. The dodecaiodide is built from two pentaiodide-groups, which are bridged by an iodine molecule and connected with secondary bonds forming double chains. The hexadecaiodide ion forms layers built up from two heptaiodide groups and one iodine molecule. Thus the dimethyldiphenylammonium cation stabilizes a unique series of polyiodides of extraordinary composition and structure.  相似文献   

17.
Mixed-ligand Complexes of Rhenium. V. The Formation of Nitrene Complexes by Condensation of Acetone at Coordinated Nitrido Ligands. Syntheses and Structures of fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] Complexes (X = Cl, Br) The reaction of rhenium(V)-mixed-ligand complexes of the general formula [ReN(Cl)(Me2PhP)2(R2tcb)] (HR2tcb = N? (N,N-dialkylthiocarbamoyl)benzamidine) with HCl or HBr in acetone initializes a condensation of the solvent and results in nitrene-like compounds as a consequence of a nucleophilic attack of the coordinated nitrido ligand on the condensed acetone. The chelate ligands are removed during this reaction and complexes of the type fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] (X = Cl, Br) are formed. fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] crystallizes triclinic in the space group P1, a = 8.575(4); b = 9.088(3); c = 18.389(9) Å; α = 75.67(3)°, β = 85.30(3)°, γ = 70.58(4)°; Z = 2. A final R value of 0.031 was obtained on the basis of 6011 independent reflections with I ≥ 2σ(I). Rhenium is coordinated in a distorted octahedral environment with the three chloro ligands in facial positions. The rhenium-nitrogen bond (1,68(1) Å) is only slightly longer than typical Re? N bonding distances in nitrido complexes. fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] is isomorphous with the chloro complex. Triclinic cell with a = 8.625(4); b = 9.198(3); c = 18.581(5) Å; α = 75.62(3)°, β = 85.40(3)°, γ = 70.91(3)°; Z = 2. The R value converged at 0.049 on the basis of 3644 independent reflections with I ≥ 2σ(I). fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] as well as fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] crystallizes in the noncentrosymmetric space group P1.  相似文献   

18.
Chloroberyllates with Nitrogen Donor Ligands. Crystal Structures of (Ph4P)[BeCl3(py)], (Ph4P)2[(BeCl3)2(tmeda)], (Ph4P)[BeCl2{(Me3SiN)2CPh}], and (Ph4P)2[BeCl4] · 2CH2Cl2 The title compounds were obtained as colourless, moisture sensitive crystals by reactions of (Ph4P)2[Be2Cl6] with pyridine, tmeda (N, N′‐tetramethylethylendiamine), or with the silylated benzamidine PhC—[N(SiMe3)2(NSiMe3)], whereas the tetrachloro beryllate was isolated as a by‐product from a solution in dichloromethane in the presence of the silylated phosphaneimine Me3SiNP(tol)3. All compounds were characterized by crystal structure determinations and by IR spectroscopy. (Ph4P)[BeCl3(Py)] ( 1 ): Space group Pbcm, Z = 4, lattice dimensions at 193 K: a = 756.2(1), b = 1739.2(2), c = 2016.3(2) pm, R1 = 0.0626. The complex anion contains tetrahedrally coordinated beryllium atom with a Be—N distance of 176.5 pm. (Ph4P)2[(BeCl3)2(tmeda)]·2CH2Cl2 ( 2 ·2CH2Cl2). Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1072.7(1), b = 1132.6(1), c = 1248.9(1) pm, α = 95.34(1)°, β = 92.80(1)°, γ = 90.81(1)°, R1 = 0.0344. Both nitrogen atoms of the tmeda molecule coordinate with BeCl3 units forming the centrosymmetric complex anion with Be—N distances of 181.3 pm. (PPh4)[BeCl2{(Me3SiN)2CPh}] ( 3 ). Space group C2, Z = 2, lattice dimensions at 193 K: a = 1255.4(2), b = 1401.9(2), c = 1085.2(2) pm, R1 = 0.0288. In the complex anion the benzamidinato ligand {(Me3SiN)2CPh} acts as chelate with Be—N distances of 174.9 pm. (Ph4P)2[BeCl4]·2CH2Cl2 ( 4 ·2CH2Cl2). Space group P2/c, Z = 4, lattice dimensions at 193 K: a = 2295.4(1), b = 982.5(1), c = 2197.2(2) pm, β = 99.19(1)°, R1 = 0.0586. 4 ·2CH2Cl2 contains nearly ideal tetrahedral [BeCl4]2— ions, like the previously described 4 ·2, 5CH2Cl2, which crystallizes in the space group P1¯, with Be—Cl distances of 203.4 pm on average.  相似文献   

19.
Preparation and Properties of (CF3)2EMn(CO)5 (E ? P, As) The complexes (CF3)2EMn(CO)5 (E ? P, As) are formed by the reaction of E2(CF3)4 with HMn(CO)5. They can be converted quantitatively to the binuclear compounds [Mn(CO)4E(CF3)2]2 in a thermal (E ? P) or photochemical (E ? P, As) process. u. v. irradiation of a 1:1 mixture gives the mixed derivative Mn2(CO)8As(CF3)2P(CF3)2 together with the symmetrical systems. The Mn? E bond is less reactive with HBr and Me3SnBr than the M? E bond in derivatives of the type Me3ME(CF3)2 (M ? Si, Ge, Sn; Me ? CH3). The terminal (CF3)2E groups are found to be strong π-acceptor ligands.  相似文献   

20.
Chloro‐N′,N′‐dimethylformamidinium‐(dimethylcyanamide)trichloroberyllate, [Me2NC(Cl)NH2]+[BeCl3(NCNMe2)]? Chloro‐N′,N′‐dimethylformamidinium‐(dimethylcyanamide)trichloroberyllate, [Me2NC(Cl)NH2]+[BeCl3(NCNMe2)]? was prepared from BeCl2 with two equivalents of dimethylcyanamide in CH2Cl2 suspension. The compound was characterized by X‐ray crystallography and by IR spectroscopy. Space group , Z = 2, lattice dimensions at 193 K: a = 620.7(1), b = 744.9(2), c = 1520.3(3) pm, α = 96.87(2)°, β = 100.41(2)°, γ = 100.17(2)°, R1 = 0.0443. Cations and anions form N–H…Cl hydrogen bridges along [010].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号