首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New η3-allyldimethyl complexes Ru(η5-C5R5)(η3-C3H5)(CH3)2, where R = H or CH3, are prepared from Ru(η5-C5R5)(η3-C3H5)Br2 by alkylation with trimethyl-aluminium. The RuIV dimethyl complex is thermally converted to the RuII 1-methylallyl compound, Ru(η5-C5R5)(η3-CH2CHCHCH3)L, where L = CO or t-C4H9NC, with evolution of methane. Kinetic and deuteration studies on the reductive process are also discussed.  相似文献   

2.
[MoCl(CO)35-C5H5)] on photolysis with allyl or crotyl halides C5H4RX gives MoIV complexes [MoX2(CO)(η3-C3H4R)(η5-C5H5)] (R = H, X = Cl, Br, I; R = Me, X = Cl, Br). [WCl(CO)35-C5H5)] under similar conditions gives trihalides [WX3(CO)25-C5H5)] (X = Cl, Br) on reaction with C3H5Cl and C3H5Br while [WCl(CO)35-C5H4SiMe3)] and [CrI(CO)35-C5H5)] react with allyl chloride to give [WCl3(CO)25-C5H4SiMe3)] and [CrCl25-C5H5)] respectively.  相似文献   

3.
Abstract

3,6-Dialkyl-2,5-Dithioxo-1,4,2λ5,5λ5-dithiadiphosphorinan-2,5-disulfides (1) react with PSCI3, to give 3,6-Dialkyl(diaryl)-1,4-dithioxo-2,5,7-trithia-lλ5,4λ5 diphosphabicyclo[2.2.1]heptanes (2). The reaction mechanism of their formation. and the stereochemistry are discussed. By reduction of 2 with (n-C4H9)3P or (C6H5),P 3,6-Dialkyl-2,5,7-trithia-1λ3,4λ3-diphosphabicyclo[2.2.1]heptanes (3) are formed. 2c reacts with one mole of (C6H5)3P to give 3,6-Diethyl-l-thioxo-2,5,7-trithia-lλ5,4λ3- diphosphabicyclo(2.2.1]heptane, 4c.

3,6-Dialkyl-2,5-dithioxo-1.4,2λ5,5λ5-dithiadiphosphorinan-2,5-disulfide (I) reagieren mit PSCI3 zu 3,6-Dialkyl(diaryl)-1,4-dithioxo-2,5,7-trithia-lλ5,4λ5-diphosphabicyclo[2.2.l]heptanen (2). Der Reaktionsmechanismus ihrer Bildung und ihre Stereochemie werden diskutiert. Die Reduktion von 2 mit (n-C4H9)3,P oder (C6H5)3P führt zu 3,6-Dialkyl-2,5,7-trithia-1λ3,4λ3-diphosphabicyclo[2.2.1] heptanen(3). 2c reagiert mit einer äquimolaren Menge (C6H5)3,P zu 3,6-Diethyl-l-thioxo-2,5,7-trithia-lλ5,4λ3- diphosphabicyclo[2.2.1]heptan, 4c.  相似文献   

4.
Upconversion luminescence tuning of β‐NaYF4 nanorods under 980 nm excitation has successfully been achieved by tridoping with Ln3+ ions with different electronic structures. The effects of Ce3+ ions on NaYF4:Yb3+/Ho3+ as well as Gd3+ ions on NaYF4:Yb3+/Tm3+(Er3+) have been studied in detail. By tridoping with Ce3+ ions, not only were unusual 5G55I7 and 5F2/3K85I8 transitions from Ho3+ ions and 5d→4f transitions from Ce3+ ions observed in NaYF4:Yb3+/Ho3+ nanorods, but also an increase in the intensity of 5F55I8 relative to 5S2/5F45I8 with increasing Ce3+ concentration, which can be attributed to efficient energy transfers of 5I6 (Ho)+2F5/2 (Ce)→5I7 (Ho)+2F7/2 (Ce) and 5S2/5F4 (Ho)+2F5/2 (Ce)→5F5 (Ho)+2F7/2 (Ce). Interestingly, with increasing pump power density, the luminescence of NaYF4:Yb3+/Ho3+ nanorods is always dominated by the 5S2/5F45I8 transition, whereas the luminescence of Ce3+‐tridoped NaYF4:Yb3+/Ho3+ nanorods is dominated by the 5S2/5F45I8 and 5G55I7 transitions in turn. These observations are discussed on the basis of a rate equation model. Furthermore, Gd3+‐tridoped NaYF4:Yb3+/Tm3+(Er3+) nanorods can emit multicolor upconversion emissions spanning from the UV to the near‐infrared under 980 nm excitation. 6P5/28S7/2 (≈306 nm) and 6P7/28S7/2 (≈311 nm) transitions from Gd3+ ions were observed. In addition to the aforementioned luminescence properties, these Gd3+‐tridoped nanorods also exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 or 5 K.  相似文献   

5.
Transition Metal Complexes of 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3λ5-Diphosphete 1,1,3,3-Tetrakis(dimethylamino)-1λ5,3aλ5-diphosphete, 1 , reacts with W(CO)6 to yield the isomeric complexes {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)tungsten 4 and {1,1,3,3-tetrakis(dimethylamino)-1,4-dihydro-1λ5,3λ5-[1,3]diphosphetium}(pentacarbonyl)tungsten 5 . With Cr(CO)6 the complex {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)chromium 6 is formed. From the reaction products of Fe3(CO)12 and Fe2(CO)9 with 1 the complex {1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete}(pentacarbonyl)iron 7 could be isolated. Properties, nmr, ir and mass spectra of the new compounds are reported. 6 and 7 were characterized by X-ray structure determinations.  相似文献   

6.
The new methylidene trinickel cluster complexes, [RCNi35-C5H53] (R  CMe3 or SiMe3) and [Me3SiCNi35-C5H5)2(η5-C5H4CH2SiMe3)] have been isolated in low yield from reactions between nickelocene and the corresponding alkyllithium reagents, RCH2Li. The compounds [RCNi35-C5H5)3] (R  Ph, CMe3 or SiMe3) have also been obtained by treatment of the σ-alkylnickel complexes [(η5-C5H5)Ni(CH2R)(PPh3)] with n-BuLi in the presence of an excess of nickelocene, but under similar conditions [(η5-C5H5)Ni(CH2C1OH7-2)-(PPh3)] (where C1OH7-2  2-naphthyl) failed to give [2-C1OH7CNi35-C5H5)3]. The attempted synthesis of [(η5-C5H5)Ni(CH2CCH)(PPh3)] from [(η5-C5H5)-NiBr(PPh3)] and CHCCH2MgBr gave only [(η5-C5H5)Ni(CCMe)(PPh3)] by an unusual rearrangement reaction.  相似文献   

7.
The synthesis of octapropylporphyrin on the basis of 5-carboxy-2-methoxymethyl-3,4-dipropylpyrrole was realized. It was demonstrated that in the thermolysis of meso-N-methylformaldimineoctapropylporphyrin, 31,51-cyclo-31-ethylidene- and 31,51-cyclo-31-ethyl-51-(N-methylimine) derivatives are also formed in addition to 31,51-cyclo-31-ethylhectaporphyrin.See [1] for Communication 17.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 922–927, 1984.  相似文献   

8.
The tricarbonylchromium η6π6 complexes of 2,4,6-triphenyl- and 2,4,6-tri-t-butyl-λ3-phosphorins 3a and 3b add nucleophiles regio- and stereo-specifically to the phosphorus atom in the exo-position giving the λ4-phosphorin anions which now add electrophiles in the endo position, giving η5π65-phosphorin ylide complexes 5a and 5b, respectively. The 1H, 13C and 31P NMR spectra of 3a and 3b and especially 5a and 5b are discussed with respect to the stereoisomeric complexes 5a having two different exocylic substituents at the phosphorus atom, synthesized from e.g. 1-ethyl-1-methyl-2,4,6-triphenyl-λ5-phosphorin and Cr(CO)6. The tricarbonylchromium-1,1,-dialkyl or alkyl-aryl-2,4,6-tri-t-butyl-λ5-phosphorin 5b can only be synthezised from tricarbonylchromium-2,4,6-tri-t-butyl-λ3-phosphorin by addition of nucleophiles and electrophiles since the corresponding λ5-phosphorin derivatives are not available. By removal of the tricarbonylchromium residue from the λ5-phosphorin-ylide complexes 5b, however, also 2,4,6-tri-t-butyl-λ5-phosphorins can be prepared.  相似文献   

9.
The metallation of the η5-C5H5(CO)2Fe-η15-C5H4Mn(CO)3 complex with BunLi (THF, ?78 °C) followed by the treatment of the lithium derivative with Ph2PCl afforded the η5-Ph2PC5H4(CO)2Fe-η15-C5H4Mn(CO)3 complex. The reaction of the latter with η5-C5H5(CO)3WCl in the presence of Me3NO produced the trinuclear complex η5-C5H5Cl(CO)2W-η15-(Ph2P)C5H4(CO)2Fe-η15-C5H4Mn(CO)3. The structure of the latter complex was established by IR, UV, and 1H and 31P NMR spectroscopy and X-ray diffraction. The reaction of MeSiCl3 with three equivalents of LiC5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3 gave the hexanuclear complex MeSi[C5H4(CO)2Fe-η15-C5H4Mn(CO)2PPh3]3.  相似文献   

10.
Steady-state and transient photokinetic and spectroscopic measurements on aqueous Eu(NO3)3 show different affinities of 7F, 5D1 and 5D0 Eu3+aq towards nitrate ion. This may be rationalised by differences in the inner- and outer-shell hydration structures between 5DO, 5D1 Eu3+(aq) and 7F Eu3+(aq). Nitrate penetration into the inner-shell of Eu3+(aq), and inner-coordination (EuNO2+3)* exciplex formation, occur solely in the long-lived 5DO level of Eu3+(aq).  相似文献   

11.
The complexes (η5-C5H5)Pd(η1-C5H5)PR3 which are prepared from [Cl(PR3)-Pd]2(μ-OCOCH3)2 and TlC5H5 are fluxional in solution. According to the 1H and 13C NMR spectra at various temperatures, two dynamic processes occur. The process with the higher activation energy is a π/σ (η51) exchange of the two different cyclopentadienyl ligands, whereas the second one with the lower activation energy presumably is a metallotropic rearrangement (1,2-shift). The coalescence temperature for the η51 exchange depends on the size of the phosphine. The X-ray structural analysis of (C5H5)2PdPPri3 proves that it exists as a “frozen” η5 + η1 structure in the crystal with the palladium approximately in a square-planar coordination. The η5-bonded cyclopentadienyl ring shows some unusual bonding patterns which are obviously electronic in nature. EHT-MO calculations for (η5-C5H5)PdCH3(PH3) indicate that in this model system alternating CC distances in the ring and a stronger bond of the metal to one of the five carbon atoms of the C5H5 ligand are to be expected. The calculations suggest that in similar complexes possessing a six-electron donor ligand like C5H5? and a metal fragment which is isolobal to PdCH3(PH3)+, analogous distortions should be observed. Some reactions of the compounds (η5-C5H5)Pd(η1-C5H5)PR3 are described.  相似文献   

12.
Concentration‐optimized CaSc2O4:0.2 % Ho3+/10 % Yb3+ shows stronger upconversion luminescence (UCL) than a typical concentration‐optimized upconverting phosphor Y2O3:0.2 % Ho3+/10 % Yb3+ upon excitation with a 980 nm laser diode pump. The 5F4+5S25I8 green UCL around 545 nm and 5F55I8 red UCL around 660 nm of Ho3+ are enhanced by factors of 2.6 and 1.6, respectively. On analyzing the emission spectra and decay curves of Yb3+: 2F5/22F7/2 and Ho3+: 5I65I8, respectively, in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits a larger absorption cross section at 980 nm and subsequent larger Yb3+: 2F5/2→Ho3+: 5I6 energy‐transfer coefficient (8.55×10?17 cm3 s?1) compared to that (4.63×10?17 cm3 s?1) in Y2O3, indicating that CaSc2O4:Ho3+/Yb3+ is an excellent oxide upconverting material for achieving intense UCL.  相似文献   

13.
The phosphorus ylids Ph3PCHR (R = Me, Et, Prn, Pri, Bun, Cl, and OMe), and the ylids Ph3AsCH2, Me2SCH2, and Me2S(O)CH2 react with [Ni(η5-C5H5)Br(PPh3)] at room temperature to give the complexes [Ni(Ph3PCHR)(η5-C5H5(PPh3)] Br, [Ni(Ph3AsCH2)(η5-C5H5)(PPh3)]Br, [Ni(Me2SCH2)(η5-C5H5)(PPh3)]Br and [Ni{Me2S(O)CH2} (η5-C5H5)(PPh3)]Br, respectively. These are readily converted into the corresponding hexafluorophosphate salts on reaction with ammonium hexafluorophosphate. Under more forcing conditions the stabilised ylid Ph3PCHCOPh gives a product believed to be the complex [Ni(Ph3PCHCOPh)25-C5H5)]Br, isolated and characterised as its PF6? salt.  相似文献   

14.
The treatment of the aquocation [Co(η3-2-MeC3H4)(η5-C5H5)(H2O]+ with neutral and anionic ligands gives new cobalt complexes containing cations [Co(η3-2-MeC3H4)(η5-C5H5)L]n+, n = 0; L = CN, CH3COO, CF3COO and n = 1; L = P(p-MePh)3, NCEt, NCPh, CNCy, dppm and [{Co(η3-2-MeC3H4)(η5-C5H5)}2 (μ-L-L)]2+, L-L = bipy, dppm. The neutral cyano complex reacts with various electrophiles to give cationic isocyanide complexes containing the cation [Co(η3-2-MeC3H4)(η5-C5H5)(CNR)]+, which have been isolated in low yields. Chemical behaviour and structural implications of IR and 1H and 13C NMR spectra are discussed.  相似文献   

15.
η5-C5H5V(NO)2CO is prepared in 40% yield by the photo-reaction between η5-C5H5V(CO)4 and [Co(NO)2Br]25-C5H5V(NO)2CO reacts by an SN1 mechanism with various phosphines PZ3 to yield η5-C5-H5V(NO)2PZ3. The phosphine complexes are also obtained by photo-induced ligand interchange between η5-C5H5V(CO)3PZ3 and [Co(NO)2Br]2, or η5-C5H5V(CO)4 and Co(NO)2Br(PZ3). In all cases, the main cobalt species formed is Co(NO)(CO)3. While the one-bond vanadiumphosphorus coupling constants of most of the phosphine complexes are virtually the same (ca 410 Hz),the chemical shift values δ(51V) (?1328 to ?973 ppm rel. VOCl3) decrease in the order PF3 > CO > P(OR)3 > P(alkyl)3 > PPh3 > PPh(NEt2)2, reflecting the decreasing π-acceptor ability of the ligands. δ(51V) also decreases in the series of alkylphosphines PR3 (R = Me, Et, Prn, Bui, Pri, BUt) as the cone angle of PR3increases.  相似文献   

16.
Reaction-solution calorimetric studies involving the complexes Ti[η5-C5(CH3)5]2-(CH3)2, Ti[η5-C5(CH3)5]2(CH3), Ti[η5-C5(CH3)5]2(C6H5), Ti[η5-C5(CH3)5]2Cl2, and Ti[η5-C5(CH3)5]2Cl, have enabled derivation of titaniumcarbon and titaniumchlorine stepwise bond dissociation enthalpies in these species.  相似文献   

17.
Ho3+/Yb3+ co‐doped PbTiO3 nanocrystals with different content of dopant were successfully prepared via a facile hydrothermal method. The purity, morphology, element distribution, chemical state and up‐conversion (UC) photoluminescence (PL) of PbTiO3 nanocrystals affected by Ho3+ dopant are investigated systematically. X‐ray diffraction (XRD) results illustrate that PbTiO3 samples with the doping Ho3+ concentration ranging from 0 to 5 mol‐% are perovskite structure. The doping Ho3+ ions have no change on the crystal structure of perovskite PbTiO3. Owing to the non‐equivalent substitution of Ho3+ to Ti4+ in PbTiO3, the particle size of Ho3+/Yb3+ co‐doped PbTiO3 samples is decreased as well as the particle agglomeration is detected. Moreover, Ho and Yb ions have uniform distributions in the PbTiO3 nanoparticles as the presence of Ho3+ and Yb3+ cations. The up‐conversion spectra demonstrate that Ho/Yb co‐doped PbTiO3 samples have up‐conversion emissions centered at 550 nm, 660 nm and 755 nm, corresponding to the transitions of 5F4(5S2)→5I8, 5F55I8 and 5S2(5F4)→5I7 of Ho3+ ions. Additionally, the effect of temperature on the UC PL property of Ho3+/Yb3+ co‐doped PbTiO3 system is further investigated. The sensitivity and the trend of Ho3+/Yb3+ co‐doped PbTiO3 samples in temperature from 298 k to 493K are calculated on the basis of fluorescence intensity ratio (FIR) method. Ho3+/Yb3+ co‐doped PbTiO3 nanocrystals are verified the high potential in the optical temperature sensing.  相似文献   

18.
The nitrosylcarbonylisonitrile complexes η5-C5H5M(NO)(CO)CNR (R = Me for Cr, Mo, W; R = Et, SiMe3, GeMe3, SnMe3 for Mo) are formed by treatment of the nitrosylcarbonylcyanometalates Na[η5-C5H5M(NO)(CO)CN] with [R3O]BF4 (R = Me, Et), Me3SiCl, Me3GeCl or Me3SnCl. The isoelectronic dicarbonylisonitrile compounds η5-C5H5Mn(CO)2CNR (R = SiMe3, GeMe3, SnMe3, PPh2, AsMe2) and η5-C5H5Re(CO)2CNAsMe2 are obtained by analogous reactions of Na[η5-C5H5M(CO)2CN] (M = Mn, Re) with Me3ECl (E = Si, Ge, Sn), Ph2PCl and Me2AsBr.With phosgene the anionic complexes Na[η5-C5H5M(CO)2CN] (M = Mn, Re) can be transformed into the new carbonyldiisocyanide-bridged dinuclear complexes η5-C5H5M(CO)2CN-C(O)-NC(OC)2M-η5-C5H5. Finally, the reactions of η5-C5H5M(NO)(CO)CNMe (M = Cr, Mo, W) with NOPF6, leading to the cationic dinitrosylisonitrile complexes [η5-C5H5M(NO)2CNMe]+, are described.  相似文献   

19.
The complexes [Rh(η3-C3H4R)(η5-C5R′5)L]+BF4- (R  1-Me, R′  H, Me; R  2-Me, R′  H) (L  C5H5N, Ph3P, Ph3As) have been prepared from Rh(η3-C3H4R)(η5-C5R′5)Cl and AGBF4 in acetone, followed by reaction with the stoicheiometric quantity of L. The 1H and 13C NMR spectra of the salts are reported and discussed.  相似文献   

20.
The even-parity autoionizing resonance series 3p5np'[3/2]1,2, 3p5np'[1/2]1, and 3p5nf'[5/2]3 of Ar have been investigated exciting from the two metastable states 3p54s[3/2]2 and 3p54s'[1/2]0 in the photon energy range of 32500-35600 cm-1 with an experimental bandwidth of ~0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile index and resonance widths, resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index q and the resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n*. The line separation of the 3p5np' autoionizing resonances is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号