首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1H, 13C, 15N and 195Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2′)‐chelated, deprotonated 2‐phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl2], trans(N,N)‐[Pt(2ppy*)(2ppy)Cl] and trans(S,N)‐[Pt(2ppy*)(DMSO‐d6)Cl] (formed in situ upon dissolving [Pt(2ppy*)(µ‐Cl)]2 in DMSO‐d6) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective 1H, 13C and 15N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Δ1Hcoord = δ1Hcomplex ? δ1Hligand, Δ13Ccoord = δ13Ccomplex ? δ13Cligand, Δ15Ncoord = δ15Ncomplex ? δ15Nligand), as well as 195Pt chemical shifts and 1H‐195Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen‐adjacent H(6) protons and metallated C(2′) atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3‐lutidine, 2,3lut; 2,4‐lutidine, 2,4lut; 3,5‐lutidine, 3,5lut; 2,6‐lutidine, 2,6lut) and 2,4,6‐trimethylpyridine (2,4,6‐collidine, 2,4,6col) having general formulae [AuLCl3], trans‐[PdL2Cl2] and trans‐/cis‐[PtL2Cl2] were performed and the respective chemical shifts (δ1H, δ13C, δ15N) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The 1H, 13C and 15N NMR coordination shifts (Δ1Hcoord, Δ13Ccoord, Δ15Ncoord; Δcoord = δcomplex ? δligand) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans‐ or cis‐), metal‐nitrogen bond lengths and the position of both methyl groups in the pyridine ring system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The influence of substituents in a new series of 2H-thiopyrans, 2H-thiopyran-2-ones (thiones) and their thiazine analogues is examined by means of carbon (13C) and nitrogen (15N) NMR. A linear relationship is shown to exist between the chemical shifts (δ13C or δ15N) of the thiopyrans and the thiazines. This relationship is a good indication of the structural similarity which exists between the two series.  相似文献   

4.
Jack Huet 《Tetrahedron》1981,37(4):731-741
13C NMR chemical shifts of ethylenic carbon atom Cβ of α alkoxy-indenes and α-alkoxy-styrenes are affected by the conformation of the OR group with respect to the double bond and hence the efficiency of p- Π conjugation but, contrary to previous results, δCα is not affected. The phenyl group exerts a diamagnetic Π- effect on Cα and Cβ which is a function of its dihedral angle with the double bond. Although δCβ is especially sensitive to the Π-electron density, the chemical shifts of the ethylenic carbons are best understood by considering the total charge density. The σ and Π contributions to the total charge density are discussed using the preferred conformation of the molecules. This approach strongly suggests that the correlation between the gradual shift of δCα to low frequency and the gradual shift of δCβ to high frequency (relative to TMS) as R changes from RCH3 to RtC4H9 in certain series of enol-ethers is not due to pΠ conjugation variations. This method of interpreting 13C NMR shifts, as opposed to previous methods, is compatible with explanations of other physico-chemical properties of alkyl vinyl ethers. Although it is sometimes possible to correlate the gradual shifts of δCβ with (σ + Π) electron density variations in a homogeneous series, it seems impossible to predict the relation. In all cases, there is no evident correlation between gradual shifts of δCβ(orδCα) and the reactivity of enol ethers because one cannot consider the role of the out-of-plane conformation of the alkoxy group (which increases from RCH3 to RtC4H9); however, the out of plane conformation does not have an identical effect on δCβ and the reactivity.  相似文献   

5.
Fifty‐two samples of substituted benzylideneanilines XPhCH?NPhYs (XBAYs) were synthesized, and their NMR spectra were determined in this paper. Together with the NMR data of other 77 samples of XBAYs quoted from literatures, the 1H NMR chemical shifts (δH(CH?N)) and 13C NMR chemical shifts (δC(CH?N)) of the CH?N bridging group were investigated for total of 129 samples of XBAYs. The result shows that the δH(CH?N) and δC(CH?N) have no distinctive linear relationship, which is contrary to the theoretical thought that declared the δH(CH?N) values would increase as the δC(CH?N) values increase. With the in‐depth analysis, we found that the effects of σF and σR of X/Y group on the δH(CH?N) and the δC(CH?N) are opposite; the effects of the substituent specific cross‐interaction effect between X and Y (Δσ2) on the δH(CH?N) and the δC(CH?N) are different; the contributions of parameters in the regression equations of the δH(CH?N) and the δC(CH?N) [Eqns 4 and 7), respectively] also have an obvious difference. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The effect of deuterium on the 13C and 15N chemical shifts of enaminones has been investigated. D/H isotope shifts are reported for neutral and protonated species, i.e., when the isotope is exchanged on the C(2)-, N-, or O-atoms. In cases of slow exchange the isotope shifts were obtained from solutions containing both isotopomers, whereas for fast exchange (acidic solutions) either separate NMR. sample tubes (15N-NMR.) or coaxial tubes (13C-NMR.) were used. In neutral molecules the isotope effects δC(D, H) are intrinsic in nature. In acidic solutions, the enaminocarbonyl cations formed exhibit δC(D, H)- and δN(D, H)-values which are discussed in terms of the proton transfer. The mesomeric character of the cations is reflected by characteristic features in the δC(D, H)- and δN(D, H)-values, which can be ascribed to isotopic perturbation of resonance. O-Protonation shifts in the 15N-resonance, observed for the first time, are large and positive (+60 to +76 ppm), in contrast to amides, where the effects are of the same sign but an order of magnitude smaller. Both protonation shifts and solvent-induced isotope effects are discussed in connection with the nucleophilic character of the reactive centers in the enaminone synthon.  相似文献   

7.
Silicon-29(δ29Si) NMR chemical shifts are reported for the first time of tris[(trimethylsilyl)methyl] silicon compounds (disilylated derivatives) (Me3SiA)3 CαL, where L = SiBR1R2R3 and where R varies widely in electronegativity. 29Si chemical shifts exhibit good correlation with the electronegativities of the groups bonded to the silicon atom. The 13C NMR spectra of these compounds have been recorded and assigned. δ13Cα is shown to depend on the type of substitutent on SiB. The variation of 29SiH coupling constants with electronegativity of R is studied.  相似文献   

8.
Boron-Nitrogen Compounds. LXVIII. Nuclear Magnetic Resonance Studies on 1,3,2-Diazaboracyloalkanes and Phenylborane Derivatives The 1H chemical shift differences Δδ = δ (NCH 2) – δ (NCH 3) of 1,3-dimethyl1,3,2-diazaboracycloalkanes as well as the corresponding differences of 13C chemical shifts are dependent upon the ring size. No simple correlation exists between δ11B and δ13C of the boron-bonded phenyl carbon atom of phenylborane derivates, although stereochemical factors appear to influence the absolute values of δ13C. 13C Nuclear resonance measurements permit the observation of conformational isomers of bis(methylamino)phenylborane and N-trimethyl-B-triphenylborazine at low temperatures and confirm the pseudoarmatic nature of the 1,3,2-diazaboroline ring system.  相似文献   

9.
15N-Chemical shifts of 32 enamines, 11 enaminoketones and 28 closely related amines have been determined with the isotope in natural abundance. In order to eliminate substituent effects, differential chemical shifts Δδ(N) are defined as δN(amine)-δN(enamine). This parameter is shown to correlate well with the free enthalpy of activation ΔG# for restricted rotation about the N? C(α) bond in enamines with extended conjugation. Δδ(N) values of substituted anilinostyrenes correlate also with 13C-chemical shifts of the β-carbon in the enamine system and with Hammett σ-constants of the aniline substituents. The experimental results suggest that differential 15N shifts are a useful probe to study n, π-interaction in enamines.  相似文献   

10.
The calculation of the 13C and 15N NMR chemical shifts by a combined molecular mechanics (Pcmodel 9.1/MMFF94) and ab initio (GIAO (B3LYP/DFT, 6-31 + G(d)) procedure is used to investigate the conformations of a variety of alkyl substituted anilines. The 13C shifts are obtained from the GIAO isotropic shielding (Ciso) with separate references for sp3 and sp2 carbons (δc = δref − Ciso). The 15N shifts are obtained similarly from the GIAO isotropic shielding (Niso) with reference to the 15N chemical shift of aniline. Comparison of the observed and calculated shifts provides information on the molecular conformations. Aniline and the 2,6-dialkylanilines exist with a rapidly inverting symmetric pyramidal nitrogen atom. The 2-alkylanilines have similar conformations with the NH2 group tilted away from the 2-alkyl substituent. The N,N-dialkylanilines show more varied conformations. N,N-dimethylaniline has a similar structure to aniline, but N-ethyl, N-methylaniline, N,N-diethylaniline, and N,N-diisopropylaniline are conformationally mobile with two rapidly interconverting conformers. In contrast, the anilines substituted at C2 and the nitrogen atom exist as one conformer where the steric interaction between the C2 substituent and the N substituent determines the conformation. In 2-methyl-N-methylaniline, the nitrogen atom is pyramidal as usual with the N-methyl opposite to the 2-methyl, but in 2-methyl-N,N-dimethyl aniline, the NMe2 group is now almost orthogonal to the phenyl plane. This is also the case with 2-methyl-N,N-diethylaniline and 2,6-diisopropyl-N,N-dimethylaniline. The comparison of the observed and calculated 15N chemical shifts confirms the above findings, in particular the pyramidal conformation of aniline and the above observations with respect to the conformations of the N,N-dialkylanilines.  相似文献   

11.
The 29Si-NMR chemical shifts δ(29Si) of (CH3)4?nSiXn compounds and some 13C-NMR chemical shifts δ(13C) of analogous carbon compounds are discussed by means of relative paramagnetic screening constants σ*, calculated by a simplified model. In this model only the Si(3P)- and C(2P)-orbitals are considered; for the calculations, the electronegativities of Si, C and the X-substituents and a single empirical parameter are necessary. The calculated values of σ* are in good agreement with the change of the chemical shifts which are observed for the (CH3)4?nMXn compounds with different X and n. These results clearly show that δ(29Si) and δ(13C) depend primarily on the σ-charge of the Si- and C-atom, and that (P? d)π-interactions on the Si-atom are of minor importance.  相似文献   

12.
《Chemical physics》1987,116(3):391-398
High-resolution 13C NMR spectra of polyoxymethylene (POM) in the solid state have been measured in order to obtain a relationship between the conformation and 13C NMR chemical shift tensor (δ11, δ22 and δ33) and its isotropic average. It was found that the 13C isotropic chemical shift of POM in the crystalline region appears upfield with respect to that in the noncrystalline region and that the width Δδ ( = δ11 - δ33) in the crystalline region is much larger than that in the noncrystalline region. These experimental findings can be reasonably explained by a theoretical calculation for an infinite POM chain based on a tight-binding molecular orbital calculation within the CNDO/2 framework.  相似文献   

13.
Aldehyde (δCH) and enolic (δOH) proton chemical shifts, the corresponding spin–spin coupling constants (JCH,OH) and the 13C chemical shifts (δC) have been measured for three cyclic β-ketoaldehydes as a function of temperature. A tautomeric equilibrium has been shown to exist between the aldo–enol ( A ) and hydroxymethylene ketone ( B ) forms. The chemical shifts δCH δOH and δC for the two pure tautomeric forms A and B have been calculated. The enthalpy changes ΔH in the tautomeric process A ? B and the percentages of the tautomeric forms have been determined.  相似文献   

14.
13C NMR chemical shifts have been calculated for structures of some substituted 3‐anilino‐2‐nitrobenzo‐[b]thiophenes ( 2 o) and 2‐anilino‐3‐nitrobenzo[b]thiophenes ( 3 o) derivatives containing OH, NH2, OMe, Me, Et, H, F, Cl and Br. The molecular structures were fully optimized using B3LYP/6‐31G(d,p). The calculation of the 13C shielding tensors employed the GAUSSIAN 03 implementation of the gauge‐including atomic orbital (GIAO) and continuous set of gauge transformations (CSGT) by using 6‐311++G(d,p) basis set at density functional levels of theories (DFT). The isotropic and the anisotropy parameters of chemical shielding for all compounds are calculated. The predicted 13C chemical shifts are derived from equation δ=δ0+δ where δ is the chemical shift, δ is the absolute shielding, and δ0 is the absolute shielding of the standard TMS. Excellent linear relationships have been observed between experimental and calculated 13C NMR chemical shifts for all derivatives  相似文献   

15.
Abstract

The 15N, 31P and 31C NMR spectra of several series of phospha-λ5-azenes are reported. For the N-arylsulfonyl-P,P,P-triphenylphospha-δ5-azene series (R-C6H4N-SO2-PPh3), the 31P chemical shifts, various 13C chemical shifts and 1JPN were observed to correlate linearly with the Hammett σ constants. Interestingly, the 15N chemical shifts did not correlate acceptably with any σ or with the Taft dual substituent parameter equation, and 1JPC was invariant with substituent. For the N-arylcarbonyl-P,P,P-triphenylphospha-λ5-azene series (R-C6H4-CO-N=PPh3), δ31P and various δ13C's were observed to linearly correlate with the δ constants, while δ15N, 1JPN and 1JPC correlated with both the σ and σ constants. For the N-phenyl-P,P,P-triarylphospha-λ5-azene series [Ph-N=P(C6H4-R)3] the best correlations were observed between 31P, 15N and several 13C chemical shifts and the σ constants.  相似文献   

16.
Carbon-13 chemical shifts δ± in a variety of cyclohexadienylic cations and anions have been separated semi-empirically into contributions from (a) the hypothetical neutral framework, (b) charge effects and (c) interactions between ions and between ions and solvent molecules. Carbon-13 shifts for sites in neutral model compounds, δ0, approximate contribution (a) the shift differences for the model carbons δ±3,503,5 are assumed to reflect electric field effects (b). Thus what remains, δ±s0s- (δ±3,503,5) comes from the charge. The summation of these terms for each of the ions comes to ca. 165 ppm. This shows that a changein charge of ±1 of the neutral model, with correction for the electric field, brings about a change in shift of 165 ppm, thus supporting the linearity of charge with shift.  相似文献   

17.
The carbon-13 NMR spectra of coumarin, 6-, 7-, 8-methoxycoumarin, and 5,7-, 7,8-, 5,8- and 6,7-dimethoxycoumarin have been measured and assigned. It is shown that substituent induced chemical shifts S(δ) in the mono- and disubstituted systems correlate well with the HMO atom-atom polarisibilities πij of the parent compound: Sii) = 80.13 πij with a standard deviation of 1.42 ppm and a correlation factor of 0.994. Correlations between δ(13C) values and charge densities calculated by various semi-empirical methods are less successful.  相似文献   

18.
NMR and Vibrational Spectroscopic Investigations on Higher Indium Trialkyls Several isomeric indium tripentyles and trihexyles are synthesized by known methods. The chemical shifts δ of the 13C NMR spectra are used together with those of the corresponding alkanes for determining the increments Δδ(13C) = δ(InR3)–δ(RH). By means of these increments and the Grant/Paul-method the chemical shifts δ(13C) of any indium trialkyl can be calculated. The vibrational spectra (IR and Raman) of most liquid trialkyls show very obvious rotameric splittings of the InC vibrations between 450–600 cm?1. Both frequent conformations of the alkyl ligands with three and more C atoms consist of either a βH atom (notations PH, SHH, and THHH with vInC between 450–500 cm?1) or a γC atom (PC, SCH, TCHH with vInC between 550–600 cm?1) in the transposition to indium. The InC stretching modes of all other more rare configurations can be observed between 500 to 550 cm?1.  相似文献   

19.
The 1H and 13C NMR spectra of several isomeric N-substituted tetrazoles have been investigated. 13C NMR is shown to be more useful for distinguishing between structural isomers of N-substituted tetrazoles except for those carrying electropositive substituents like SnBu3. Correlations of δC-5 (inverse) and 1J(C-5,H) with s?1 found for 1-substituted tetrazole allowed the identification of the N SnBu3 derivative as 1-(tri-n-butylstannyl)tetrazole. The phenyl carbon chemical shift difference ΔC′ = δC-3′-δC-2′ is insignificant for structure elucidation and conformational studies of N-substituted 5-phenyltetrazoles; ΔH′ from 1H NMR spectra seems to be more useful.  相似文献   

20.
This work is concerned with the relationship between chemical shifts (δ) of protons and their charge densities (q). It can be shown that the relation δH = a + bqH + cqC (qC = charge density at the corresponding C-atom) fits best for a prediction of δ-values from calculated charge densities. The smallest standard error for the prediction of δ-values is obtained if the charge densities are calculated by the CNDO- or INDO-method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号