首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The slow crack growth resistance was measured in an ethylene-octene copolymer as a function of the morphological changes produced by varying the thermal history. Morphology was varied by annealing the quenched state at temperatures between 86°C and the melting point. The slow crack growth behavior was measured by the lifetime of a notched tensile specimen under a constant load. In general, the lifetime exhibited a maximum at a critical value of the annealing temperature. This critical annealing temperature decreased with a decrease in the temperature at which the lifetime was measured. The former result is understandable in terms of the increase in crystal strength as the annealing temperature is increased and the decrease in the number of tie molecules when more material is melted as the annealing temperature increases. The latter result depends on the relationship between crystal size and the effect of testing temperature. Differential scanning calorimetry data played a key part in analyzing the results. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
The slow crack growth behavior of a linear polyethylene with different morphologies was studied by using three point bending with a single edge notched specimen at testing tem-peratures from 30 to 80°C. The morphology was varied by annealing the quenched material at temperatures from 86°C to 135°C. It was found that at test temperatures of 60°C or less, the changes in failure time with annealing temperature are very similar to the change in density with a maximum at 130°C. At testing temperatures above 60°C, the relationship of between failure time and annealing temperature is altered when the test is in the range of the α transition temperature. These results indicate that with respect to slow crack growth in the case of a homopolymer the strength of the crystals is relatively more important than the number of tie molecules. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
An ethylene-hexene copolymer was fractionated into five fractions and the density of short-chain branches was measured for each fraction. The slow crack growth behavior was measured on each fraction by sandwiching the small amount of fractionated resin of about 0.2 g between polyethylene grips. The resistance to slow crack growth was negligible for the three fractions whose Mw was less than 1.5 × 105. For the fourth fraction with Mw greater than 1.5 × 105, the resistance to slow crack growth was very high, being greater than that for the whole resin even though its density of short-chain branches was less than that of the whole resin. It is concluded that a molecular weight greater than 1.5 × 105 is required to create the number of tie molecules that is necessary to produce a high resistance to slow crack growth in this particular copolymer. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Intercrystalline molecular connections in semicrystalline polymers have been the subject of numerous discussions and controversies. Nevertheless, there is one point of agreement: such intercrystalline tie molecules have a prime role in the mechanical and use properties of the materials, notably the resistance to slow crack growth. This article is a critical review of the mechanisms of generation of the tie molecules during the stage of crystallization and of the experimental and theoretical assessment of their concentration. Polyethylene and related materials are mainly studied. The contribution of chain entanglements is also discussed in parallel with tie molecules. Particular attention is paid to Huang and Brown's statistical approach, which appears to be the most appropriate one for predictive purposes and has aroused much interest from various authors. Attempts are made to provide solutions to the shortcomings of this model. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1729–1748, 2005  相似文献   

5.
Slow crack growth behavior in polyethylene pipe grade resins were studied using both static fatigue (stress-rupture) and cyclic fatigue tests. This was done to better understand the applicability of cyclic fatigue in the prediction of slow crack growth ranking determined from the static fatigue test. In all polyethylene pipe grade resins tested at 80 °C, reduced crack growth failure times were exhibited when the cyclic fatigue test was employed. However, when applied to rank the resins through their slow crack failure times, the cyclic fatigue results did not always confirm those obtained from the static fatigue test. That is, in some cases, a resin with higher slow crack resistance ranking (longer failure times) than another resin in static fatigue exhibited lower ranking (shorter failure times) in the cyclic fatigue test. This abnormality of reversal in ranking is not a general observation but does occur. Based on the data obtained so far, when resins with smaller differences between static fatigue and cyclic fatigue slow crack growth failure times are compared with those resins having larger differences, the chances of correctly predicting the ranking obtained from static fatigue using cyclic fatigue tend to decrease. Hence, it is suggested that one needs to practice caution when using cyclic fatigue to predict the static fatigue ranking of resins for slow cracking resistance. Some insight into the cause of such abnormality is discussed with reference to creep-fatigue interactions.  相似文献   

6.
The microstructure and the mechanical properties of polybutene-1 films containing needle crystals are described. AboveT g, the Young's modulus is nearly temperature independent over a temperature range of 100 °C. Mechanical and thermal measurements indicate that the end and side surfaces of the needle crystals act as physical tie points for the amorphous molecules.  相似文献   

7.
8.
Thermal decomposition of manganese malonate dihydrate single crystals grown by gel method has been studied using the TG-DTA and DSC techniques. The presence of water molecules and the dehydration stages are discussed. Dielectric constant, dielectric loss, and AC conductivity have been estimated as a function of temperature in the range of 40–120 °C for four different frequencies. Thermal studies reveal that the material is thermally stable up to123 °C. The dielectric measurements indicate that the dielectric parameters increase with the increase in temperature. Also, the dielectric constant and dielectric loss factor values decrease whereas the electrical conductivities increase with the increase in frequency of the AC applied.  相似文献   

9.
A theoretical equation has been developed to described the rate of slow crack growth in an ethylene-hexene copolymer in terms of the basic morphological parameters. These parameters are spacing of the butyl branches, number of tie molecules, and the thickness of the lamellar crystal. Experimentally, the thickness of the lamellae and the long period were determined as functions of the branch density. The calculation of the number of tie molecules is based on the values of the molecular weight and the long period. The model of slow crack growth is based on the rate of disentanglement of the tie molecules. The rate of disentanglement varies inversely with the number of tie molecules and directly with the number of tie molecules that are not pinned by the branches.  相似文献   

10.
The current market has widely adopted the new polyethylene pipe grade PE 100 RC (resistant to cracks) for pipe applications. However, the main drawback of this material is the long test period (∼10,000 h) required for ranking the resins. This paper proposes a modified Pennsylvania edge-notch tensile (PENT) test with higher load and temperature conditions (2.8 MPa and 90 °C). With the modified PENT test, failure time is six times shorter but slow crack growth is maintained. Additionally, it evaluates and finds an unexpected relationship between the strain hardening modulus and specimen thickness. These results suggest that the 0.30-mm thickness recommended by ISO 18488 is not optimal. Therefore, thicker specimens are proposed for accurate strain hardening modulus determination. Both methods are viable alternatives for evaluating the failure resistance of the new polyethylene pipe grades.  相似文献   

11.
The fatigue behavior of an ethylene-hexene copolymer was investigated. The effects of R, frequency, relative times under the maximum and minimum stress, and waveform were measured. The phenomenological aspects were related to the microscopic aspects of the failure process. The maximum stress produces damage by disentangling the molecules in the fibrils of the craze and the minimum stress produces damage by bending the fibrils. The net damage, which is a product of these two damage processes, has been represented by a simple equation which accounts for the phenomenological observations.  相似文献   

12.
Fatigue crack propagation tests on annealed and quenched medium-density polyethylene showed the annealed specimens to have much lower resistance to crack initiation and subsequent propagation. Although the same fracture mechanism, in which the brittle crack gradually becomes more ductile, prevailed in both cases, the voided and fibrillated crack tip root craze in the annealed material was much weaker that the nonfibrillated quenched root craze. Microstructural analyses indicate that the annealed material had separate crystallite populations, whereas the quenched material had a more homogeneous morphology. The highest melting fraction of the annealed material was composed of lamellae that were about 270 Å thick, and the quenched lamellae were estimated to be 160 Å thick. The reduced fatigue crack propagation resistance of the annealed material was suggested to be a result of a lower concentration of tie molecules and its reduced damping capability, compared to the quenched material. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
The effect of nanoclay on the fatigue crack growth behavior was investigated. Fatigue tests were carried out on edge notched specimens under cyclic tension loadings. A power–law dependency between crack growth rate and tearing energy was obtained. Natural rubber (NR) filled with 5 phr organically modified montmorillonite (OMMT) possessed the lowest value of the exponent, b, and the smallest crack growth rate at a given tearing energy, denoting the strongest resistance to crack growth. Strain‐induced crystallization was probed by synchrotron WAXD experiments, showing earliest occurrence and strongest ability of crystallization in NR with 5 phr OMMT due to the better exfoliation and orientation of clay layers. The study on the viscoelastic property by dynamic mechanical analysis indicated that NR filled with 10 phr OMMT had the largest contribution to tearing energy attributed to the viscoelastic dissipation in the viscoelastic region in front of the crack tip. This revealed that the strain‐induced crystallization played a more important role in the crack growth resistance than the viscoelastic dissipation for clay filled rubber. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The results of a study on the effects of a plasticizer, tricresyl phosphate, on the mechanical and thermal properties of unoriented films of poly(vinylidene fluoride–trifluoroethylene) (VF2/VF3) copolymer (73/27 mol%) are presented. Films were prepared by both quenching and slow‐cooling from the melt with plasticizer concentrations of 0, 5, and 10% by weight. For the slow‐cooled films, a reduction in crystallinity by 25% was observed for the heavily plasticized films, together with a reduced dynamic mechanical modulus (≈ 58%) and an increased dielectric constant (≈ 200%). For the quenched films, a small increase in crystallinity was observed together with a reduced modulus and an increased dielectric constant. Measurements of the temperature dependence of the modulus and dielectric constant at 10 Hz. were also carried out from −100°C to 100°C. This data showed that for slow‐cooled films the glass transition temperature decreased from −28°C to ‐52°C at the highest doping level. DSC thermal analysis shows a decrease in the Curie transition (≈ 4°C) and melting temperatures (≈ 9°C) for the quenched films, while the slow‐cooled films only showed a decrease in melting temperature (≈ 10°C), while the Curie transition temperature was unaffected. In addition, evidence of a two‐phase system or a nonferroelectric crystal phase is noted by the presence of two Curie transition temperature peaks. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 19–28, 1999  相似文献   

15.
X-ray diffraction analysis of pyrocatechol and hydroquinone dimethacrylates (T m = 18 and 86–88°C, respectively) shows that the oligomer molecules within crystals are packed in stacks where the methacrylate fragments of neighboring molecules are parallel to each other. The minimum distances between the centers of double bonds of adjacent methacrylate fragments in crystals of pyrocatechol and hydroquinone dimethacrylates are 4.621(3) and 4.269(4) Å. The curves showing the reduced rate of photopolymerization of oligomer melts versus conversion (9,10-phenanthrenequinone used as the initiator) display a maximum at conversions of 1.5–3.0%. The limiting conversion in photopolymerization of molten pyrocatechol dimethacrylate at 25 and 40°C is 20%; for hydroquinone dimethacrylate at 95°C, it is approximately 10%. As the temperature rises from 25 to 40°C, the maximum reduced rate of photopolymerization of pyrocatechol dimethacrylate increases by a factor of 1.4.  相似文献   

16.
To clarify the pore growth and stabilization process, the heat-setting process during the preparation of polypropylene microporous membranes was followed. It was found that pore size increasing during heat-setting was attributed to the stabilization of stretching-induced connecting bridges through crystallization and lateral shrinkage within amorphous region. The stretching-induced stable connecting bridges came from the secondary crystallization of stretched tie chains and the conversion of some unstable lamellae to fiber crystals through melting and recrystallization behavior. After stretching, during the heating process to heat-setting temperature, it was mainly the melting and recrystallization behavior that decreased the retraction of bridges. During the following heat-setting, the secondary crystallization of stretched tie chains further stabilized the connecting bridges. At the same time, the lateral shrinkage within amorphous region during heating and heat-setting further lead to the pore size increasing. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1604–1614  相似文献   

17.
The β‐crystalline form of isotactic poly(propylene) (PP) has been long recognized to have a greater mechanical absorption capacity than the α‐crystalline form. This is of major importance for improving impact properties and crack resistance of injection‐molding parts. Unfilled PP samples together with calcium carbonate‐filled PP samples having various β/α‐phase ratios, with nearly constant morphological parameters, have been investigated from the standpoint of ductile crack propagation and impact behavior. The presence of the β‐crystalline phase turned out to improve both properties. The β spherulites are notably more prone to craze initiation than α spherulites that display a propensity for cracking. Subsequent crack propagation appears to be faster in the latter ones. The plastic zone ahead from the crack tip broadens, and the specific plastic energy increases with increasing β‐phase content. The lower elastic limit of the β phase is likely to promote the early crazing. However, the suspected higher density of tie molecules in β spherulites provides more numerous and stiffer microfibrils. The impact strength of PP is also improved by the presence of β crystals as a result of greater energy‐absorption capabilities. However, filled samples turned out insensitive to the β phase. A discussion is made about the origins of the β‐phase‐induced improvement of the mechanical properties. The possible role of the β → α transition is also explained. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 31–42, 2002  相似文献   

18.
The concentrations and the growth rates of high- and low-melting type spherulites of trans-1,4-polyisoprene were measured in the temperature range 39–49°C. It was shown that above about 40°C., the crystallization rate of trans-1,4-polyisoprene is determined primarily by the radial growth rate of high-melting form (HMF) spherulites, whereas the predominance of the low-melting form (LMF) crystals below 40°C. can be attributed to the high rate of formation of LMF primary nuclei at lower crystallization temperatures. Temperature-independent rate parameters were calculated from optical and dilatometric measurements and were found to be in good agreement. Both the change in nucleation habit and spherulite growth rate with temperature can be explained on the basis of a lower end surface free energy of LMF crystals of trans-1,4-polyisoprene compared to that of the HMF crystals.  相似文献   

19.
It is known, that the lifetime of polyethylene pipes is essentially limited by slow crack growth (SCG). For state of the art PE materials common SCG testing methods have reached their limits with respect to extension of testing times. A comparatively new method is the Notched Ring Test (NRT) as developed by Choi et al.[1] Pipe rings notched at the inner wall are used. The test is carried out in 80 °C water under constant bending load. The arrangement of the notch at the inner wall reduces testing times using the residual stress of extruded pipes. A disadvantage of this method is that there is no clearly defined failure time because SCG takes place between two phases of creeping. The output of this test is an “on-set slow cracking time” (crack initiation), obtained by analysis of the displacement curve. In this work it has been shown that the NRT method yields to brittle fracture within acceptable time frames.[2] Methods for data analysis are presented. This test could be very useful applied in research and development for resin evaluation and as a tool in quality control in pipe production for evaluating the process conditions.  相似文献   

20.
The crack healing induced by ethanol in poly(methyl methacrylate) (PMMA) has been studied at temperatures of 40–60°C. Crack healing occurs because the effective glass transition temperature of PMMA is reduced to below the test temperature by ethanol plasticization. It is found that crack closure rate is constant at a given temperature. The fracture strength of healed PMMA is lower than that of the original samples. By comparing the fracture stress with the morphology of the crack edge on the PMMA surface, we found that a high degree of swelling is responsible for the incomplete recovery of mechanical strength. The fractography of the completely healed sample shows a very different fracture morphology from that of virgin PMMA. The transport of ethanol in PMMA also is studied. At lower temperatures, transport is described by ideal Case II behavior. As the temperature increases, the kinetics shift from ideal Case II to anomalous behavior. The first stage of crack healing is controlled by Case I transport. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号