首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
The permeabilities and solubilities of five gases are reported for bisphenol-A polycarbonate (PC), tetramethyl polycarbonate (TMPC), and tetramethyl hexafluoro polycarbonate (TMHFPC) at temperatures up to 200°C. The temperature dependence of permselectivity is discussed in terms of solubility and diffusivity selectivity changes with temperature for CO2/CH4 and He/N2 gas separations. The activation energies for permeation and diffusion and the heats of sorption are also reported for each gas in the three polycarbonates. Analysis of these values provides a better fundamental understanding of the effect of polymer-penetrant interactions and polymer backbone structure on the temperature dependence of the transport and sorption properties of gases in membrane separation processes. Important factors affecting the solubility and diffusivity selectivity losses or gains with increased temperature are also identified through correlation of these data with physical properties of the gases and polymers. These conclusions provide a framework for choosing the most promising membrane materials for particular gas separations at elevated temperatures. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
New functionalized particles were prepared by attaching sulfonated aromatic bishydroxy compounds onto fumed silica surface. First, a bromophenyl group was introduced onto the silica surface by reaction of bromophenyltrimethoxysilane with fumed silica. Then, sulfonated bishydroxy aromatic compounds were chemically attached to the silica surface by nucleophilic substitution reactions. The structure of the modified silica was characterized by elemental analysis: 13C‐NMR, 29Si‐NMR, and FTIR. Afterward, novel inorganic–organic electrolyte composite membranes based on sulfonated poly(ether ether ketone) have been developed using the sulfonated aromatic bishydroxy compounds chemically attached onto the fumed silica surface. The composite membrane prepared using silica with sulfonated hydroxytelechelic, containing 1,3,4‐oxadiazole units, has higher proton conductivity values in all range of temperatures (40–140 °C) than the membrane containing only the plain electrolyte polymer, while the methanol permeability determined by pervaporation experiment was unchanged. A proton conductivity up to 59 mS cm?1 at 140 °C was obtained. The combination of these effects may lead to significant improvement in fuel cells (fed with hydrogen or methanol) at temperatures above 100 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2278–2298, 2006  相似文献   

3.
The design of high-performance pervaporation membranes for the selective removal of ethanol from ethyl t-butyl ether (ETBE) was performed by using the polymer blending method. Binary blends of cellulose acetate or cellulose triacetate with a specific copolymer, poly(vinyl pyrrolidone-co-vinyl acetate), were studied by pycnometry, differential scanning calorimetry, infrared spectroscopy, solvent–mixture sorption and pervaporation.The sorption extent and especially the permeability of the blend membranes to the ethanol–ETBE azeotropic mixture increases greatly with the copolymer content with quasi-constant and high selectivity. This behavior is attributed to the specific interactions of amide C=O groups (a strong Lewis-base) in the copolymer with ethanol. The resulting high-performance membranes were stable at low temperatures but showed some performance alteration, at temperatures exceeding 80°C, because of copolymer extraction by the solvent mixture. The different behaviors of the same membrane at high and low temperatures were explained in terms of copolymer chain reptation, which was possible in the rubbery state but not in the glassy state. A crosslinking of the two polymers via urethane bonds led to perfectly stable high-performance membranes for the target application. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Two PEG-based copolymers containing two different chain extenders, as hard segments, were synthesized by 4,4′-methylenediphenyl diisocyanate (MDI). The chain extenders were 1,4-butane diol (BDO) and 1,2-ethane diamine (EDA). The application of the polyurethane (PU) and poly(urethane-urea)s (PUU)s synthesized polymers, which were characterized by Fourier transform infrared spectrometer (FTIR), differential scanning calorimetry (DSC) and atomic Force Microscopy (AFM), in the gas permeability was investigated. The obtained results indicated that by replacing the urea linkage in the polymers, the microphase separation of hard and soft segments increased. The synthesized PEG-based copolymers were semi-crystalline at room temperature. According to the DSC results, the crystallinity of the synthesized polyurethanes decreased as temperature increased. In addition, a reduction in mean surface roughness could be seen based AMF information. The gas (carbon dioxide and methane) separation properties of the polymers revealed that by replacing the urea linkage, the diffusivity, permeability and selectivity of the gases increased slightly.

The solubility and diffusivity of gases indicated he solubility domination of gas transport in these membranes. However, the sorption coefficient (S) of a particular gas was surprisingly constant for the two synthesized polymers. The CO2 permeability increased with increasing feed pressure, while CH4 permeability remained almost constant at both temperatures of 25°C and 35°C. The increase in temperature led to an increase in the permeability of the gases and a decrease in the gas selectivity for the both synthesized polyurethanes.  相似文献   

5.
A number of new fluoroalkyl ether-containing polythiophenes are synthesized via oxidative polymerization in supercritical CO2 (scCO2) and chloroform. In both cases, high-molecular-mass polymers with high yields are prepared. The properties of the polymers synthesized in scCO2, such as molecular mass, polydispersity, conjugation, and UV absorption, are similar to the properties of the polymers obtained in chloroform. All poly(fluoroalkyl ether thiophenes) show solubility in DMF, toluene, THF, chloroform, and acetone. The glass-transition temperatures of the polymers are in the range 58–82°C, and the temperatures corresponding to 10% loss in their weight are in the ranges 248–294 and 260–303°C for poly(fluoroalkyl ether thiophenes) synthesized in scCO2 and chloroform, respectively. All polymers fluoresce in the blue region with emission maxima at 506 to 526 nm. Because of the unique combination of fluoroalkyl and carbonyl groups, poly(fluoroalkyl ether thiophenes) feature good solubility in scCO2, which is a promising alternative solvent for the oxidative polymerization of fluoroalkyl ether thiophenes.  相似文献   

6.
Diffusion and solubility coefficients have been determined for the CO2?, CH4?, C2H4?, and C3H8-polyethylene systems at temperatures of 5, 20, and 35°C and at gas pressures up to 40 atm. Diffusion coefficients were obtained from rates of gas absorption in polyethylene rods under isothermal-isobaric conditions by means of a new diffusivity apparatus. The concentration dependence of the diffusion coefficients was represented satisfactorily by Fujita's free-volume model, modified for semicrystalline polymers, while the solubility of all the penetrants in polyethylene was within the limit of Henry's law. Semiempirical correlations were found for the free-volume parameters in terms of physicochemical properties of the penetrant gases and the penetrant-polymer systems. These correlations, if confirmed, should permit the prediction of diffusion and permeability coefficients of other gases and of gas mixtures in polyethylene as functions of pressure and temperature.  相似文献   

7.
A highly sensitive microcomputer-controlled chemiluminescence apparatus capable of spectral resolution of emitted light has been used to study the oxidation of thermoplastic matrix material poly(ether ether ketone), PEEK, at 110°C in oxygen. Even after prolonged exposure and extensive decay in the chemiluminescence signal, the samples show no change in properties or accumulation of oxidation products. Evidence suggests that after oxygen-assisted initiation, reaction proceeds by radical transfer primarily of polymer phenoxy radicals in a type of radical aromatic substitution reaction on PEEK. Similar substitution-type biomolecular termination of polymer phenoxy radicals can lead to excited polymer and benzoquinone, emitters that account for much of the oxyluminescence spectrum of PEEK. Under the experimental conditions, the benzoquinone is volatile and the product polymer should be indistinguishable from starting polymer.  相似文献   

8.
The temperature dependence of gas sorption and transport properties is examined for two polyimide isomers. The permeabilities and solubilities of five gases in these materials are reported over an extensive temperature range from 35 to 325°C. Also, the activation energies for permeation, the heats of sorption, and the activation energies for diffusion obtained for both polyimides are compared and correlated with physical properties of the polymers and penetrants. The influence of temperature on the selective properties of these membrane materials is discussed for three gas separations; He/N2, CO2/CH4, and O2/N2. Thorough analysis of these data provides insight into the influence of the subtle difference in chain structure of the two isomers. The performance of the 6FDA-6Fp DA as a separation membrane at high temperatures suggests that it is an outstanding candidate for use in novel elevated temperature applications. ©1995 John Wiley & Sons, Inc.  相似文献   

9.
由聚合物结构预测气体的透过性能   总被引:1,自引:0,他引:1  
本文利用基团加和法,对20多种常见聚合物的自由体积和内聚能进行了计算。发现氧气和氮气在聚合物膜中的透过率与自由体积和内聚能的比值有直接关系。此比值越大,气体的透过率越大,透过率的对数与自由体积和内聚能的比值基本呈线性关系。据此,对未知聚合物可根据其化学结构,从已有的基团数据计算该比值,从而预测它对氧气和氮气的透过性能。  相似文献   

10.
Two series of novel amorphous poly(aryl ether phthalazine)s have been prepared via an intramolecular ring closure reaction of poly(aryl ether ketone)s (PAEKs) with hydrazine monohydrate. Fluorinated PAEKs, which display solubility in solvents incorporating a ketone functionality such as acetone or ethyl acetate, were converted to poly(aryl ether phthalazine)s to observe if these polymers would display similar solubility characteristics. The poly(aryl ether phthalazine)s have glass transition temperatures in the range of 278–320°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. The fluorinated poly(aryl ether phthalazine)s were not soluble in ketonic solvents. A series of poly(aryl ether phthalazine)s incorporating pendant 2-naphthalenyl moieties has been prepared in an attempt to produce amorphous, thermally stable polymers with high glass transition temperatures. The polymers have glass transition temperatures in the range of 287–334°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. Poly(aryl ether phthalazine)s undergo an exothermic reaction above the glass transition temperature. The major product of this reaction is a rearrangement of the phthalazine moieties to quiazoline moieties, however some crosslinking of the polymers occurs. Cured samples of the poly(aryl ether phthalazine)s show a small increase in the polymer Tg and are insoluble in all solvents tested. © 1996 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 34:1897–1905, 1996  相似文献   

11.
Although poly(4-vinylpyridine) is believed to have good gas permselectivity, the intrinsic gas permeation property is rarely reported in the literature. The objective of this work is to study the the intrinsic gas permeation property of poly(4-vinylpyridine) using a free-standing film. Because of its brittleness and strong adhesion with most solid surfaces, a free-standing poly(4-vinylpyridine) film was therefore prepared from casting on a liquid mercury surface. The permeation behavior of He, H2, O2, N2, CH4, and CO2 through the film was tested over a pressure range of 252 to 800 cm Hg at 35°C. The permeability and solubility decrease slightly with an increase in pressure, whereas the diffusivity increases as pressure increases. The pressure-dependent phenomenon can be explained using the partial immobilization model and the dual sorption model. An effective gas molecule diameter, which is defined as the square root of the product of gas collision and kinetic diameters, was used to correlate the diffusivity and gas molecule size, and an empirical equation was derived. Solubility is also a strong function of gas physical properties such as critical temperature and Lennard–Jones force constant, which are the measures of gas condensability and molecule interaction, respectively. In general, higher solubility in a polymer is obtained for gases with greater condensability and stronger interaction. Typical gas permeabilities of poly(4-vinylpyridine) measured at 619 cm Hg and 35°C are: 12.36 (He), 12.64 (H2), 3.31 (CO2), 0.84 (O2), 0.14 (CH4), and 0.13 (N2) barrers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2851–2861, 1999  相似文献   

12.
A new bis(ether anhydride), 3,3′,5,5′‐tetramethyl‐2,2‐bis[4‐(4‐dicarboxyphenoxy)phenyl]propane dianhydride ( 3 ), was prepared in three steps: the nitro displacement of 4‐nitrophthalonitrile with 2,2‐bis(4‐hydroxy‐3,5‐dimethylphenyl)propane, the alkaline hydrolysis of the intermediate bis(ether dinitrile), and the subsequent dehydration of the resulting bis(ether diacid). A series of new highly soluble poly(ether imide)s with tetramethyl and isopropylidene groups were prepared from the bis(ether anhydride) 3 with various diamines by a conventional two‐stage synthesis including polyaddition and chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.54–0.73 dL g?1. Gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 54,000 and 124,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. Most of the polymers could be dissolved with chloroform concentrations as high as 30 wt %. These polymers had glass‐transition temperatures of 244–282 °C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight losses recorded above 463 °C in nitrogen. These transparent, tough, and flexible polymer films were obtained through solution casting from N,N‐dimethylacetamide solutions. These polymer films had tensile strengths of 81–102 MPa and tensile moduli of 1.8–2.0 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2556–2563, 2002  相似文献   

13.
A method is proposed to analyze the effect of pressure on permeation of gases through semicrystalline polymers above the glass transition temperature. The method utilizes similarities in molecular diameters of the gases and differences in their solubilities. Two polymers, polyethylene and polypropylene, and a series of gases are chosen for an application of the method, and the effect of pressure on the permeabilities for 10 gases is measured in the pressure range 1–130 atm at 25°C. For polymers, the logarithm of the permeability coefficient is linear in the pressure for each gas, with negative slope for slightly soluble gases (He, Ne, H2, N2, O2, and Ar) and positive slope for highly soluble gases (CH4, Kr, CO2, and N2O). Analyzing these slopes by the method proposed permits contributions of hydrostatic pressure and concentration to the pressure dependence of permeation to be evaluated. On the basis of the results, the mechanism of gas permeation in rubbery films under high pressures is discussed.  相似文献   

14.
Synthesis and Properties of Novel Poly(amine ether)s   总被引:8,自引:0,他引:8  
Using aromatic bis(4-bromophenyl) ether and various aromatic diamines as the monomers, a series of novel poly(amine ether)s (PAEs) have been synthesized via palladium-catalyzed aryl amination, which is the Hartwig-Buchwald polycondensation reaction. Their structures were characterized by means of elemental analysis, FT-IR, 1^H NMR and UV-Vis spectroscopy. The results show a good agreement with the proposed structures. Their general properties were studied by DSC and TG and it's obvious that they show high glass transition temperatures (Tg〉200 ℃), good thermal stability with high decomposition temperatures (TD〉500℃) and excellent solubility. The mechanical behavior of these polymers suggested that they could be considered a new class of high-performance polymers.  相似文献   

15.
Soluble brominated poly(arylene ether)s containing mono‐ or dibromotetraphenylphenylene ether and octafluorobiphenylene units were synthesized. The polymers were high molecular weight (weight‐average molecular weight = 115,100–191,300; number‐average molecular weight = 32,300–34,000) and had high glass‐transition temperatures (>279 °C) and decomposition temperatures (>472 °C). The brominated polymers were phosphonated with diethylphosphite by a palladium‐catalyzed reaction. Quantitative phosphonation was possible when 50 mol % of a catalyst based on bromine was used. The diethylphosphonated polymers were dealkylated by a reaction with bromotrimethylsilane in carbon tetrachloride followed by hydrolysis with hydrochloric acid. The polymers with pendant phosphonic acid groups were soluble in polar solvents such as dimethyl sulfoxide and gave flexible and tough films via casting from solution. The polymers were hygroscopic and swelled in water. They did not decompose at temperatures of up to 260 °C under a nitrogen atmosphere. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3770–3779, 2001  相似文献   

16.
New fluorinated poly(ether sulfone)s were prepared from bisphenols and α,ωbis(4-fluorophenylsulfonyl)perfluoroalkanes. The fluorinated sulfone monomers were synthesized by reaction of 4-fluorobenzenethiol salts with perfluoroalkylene diiodides, followed by oxidation. Sodium carbonate mediated polymerization gave high molecular weight polymers in excellent yield. The polymers are generally soluble in chlorinated hydrocarbons and some dipolar solvents, are amorphous with Tg's in the range of 120–160°C and are stable to 400°C. They form clear, colorless films by solution casting. Cast films have dielectric constants and dissipation factors somewhat below those of typical poly(ether sulfone)s, and show good permeability and selectivity for O2/N2 gas separations.  相似文献   

17.
Polyhydrazides and poly(amide‐hydrazide)s were prepared from two ether‐sulfone‐dicarboxylic acids, 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoic acid and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoic acid, or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, and p‐aminobenzhydrazide via a phosphorylation reaction or a low‐temperature solution polycondensation. All the hydrazide polymers were found to be amorphous according to X‐ray diffraction analysis. They were readily soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide and could afford colorless, flexible, and tough films with good mechanical strengths via solvent casting. These hydrazide polymers exhibited glass‐transition temperatures of 149–207 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the solid state at elevated temperatures. Although the oxadiazole polymers showed a significantly decreased solubility with respect to their hydrazide prepolymers, some oxadiazole polymers were still organosoluble. The thermally converted oxadiazole polymers had glass‐transition temperatures of 217–255 °C and softening temperatures of 215–268 °C and did not show significant weight loss before 400 °C in nitrogen or air. For a comparative study, related sulfonyl polymers without the ether groups were also synthesized from 4,4′‐sulfonyldibenzoic acid and the hydrazide monomers by the same synthetic routes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2271–2286, 2001  相似文献   

18.
The effect of stereoregularity on gas permeation properties of poly(methyl methacrylate) (PMMA) was investigated. The gas permeability coefficients for He, H2, O2, N2, Ar, CH4, and CO2 at 35°C near atmospheric pressure have been measured for three different PMMAs. Apparent diffusion and solubility coefficients were obtained from time lag data, and these were compared with data for a commercial PMMA previously reported. The permeability, solubility, and diffusion coefficients increase as the content of syndiotactic sequences increases. These observations are consistent with more dense packing of the isotactic form in the glassy state that stems in part from its lower glass transition temperature. The transport behavior for a 50:50 isotactic/syndiotactic blend was also studied. These so-called stereocomplexes exhibit permeation behavior comparable to other weakly interacting miscible blend systems.  相似文献   

19.
The permeation, diffusion, and sorption of dimethyl ether into a series of commercial fluoroelastomers were characterized at various pressures and temperatures. The polymers under study were based on tetrafluoroethylene and contained various amounts of other perfluorinated monomers: perfluoromethylvinylether, hexafluoropropylene, and a partially fluorinated monomer, vinylidene fluoride (VDF). These polymers were also filled with inorganic particles and cured with different techniques. The permeation rate of dimethyl ether in the elastomers examined, as well as the solubility value, increased as the content of the nonperfluorinated monomer (VDF) increased, and this was consistent with the solubility parameter theory. The diffusion coefficients, at a fixed concentration, had rather similar values for most of the elastomers examined. Both the permeability and diffusivity increased with temperature, and the corresponding activation energies were obtained for two selected polymers. The solubility of dimethyl ether, at a fixed temperature and activity, showed a linear dependence versus the weight fraction of the partially fluorinated monomer (VDF) in the polymeric matrix. The effect of the filler on the sorption and transport properties was also considered: the addition of the filler lowered the permeability and diffusivity, whereas the solubility was generally increased with respect to the crosslinked rubber. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1987–2006, 2004  相似文献   

20.
Permeability, diffusion, and solubility coefficients for H2O vapor in four different 6FDA-based polyimides were determined at temperatures between 25 and 45°C and over a wide range of relative humidities. The solubility of H2O vapor in some of the polyimides studied can be described by the “dual-mode sorption” model whereas in other polyimides it is represented by the Flory-Huggins equation, which suggests that the latter polymers are plasticized by H2O. The solubility of H2O vapor in the polyimides decreases as the temperature is raised and increases with increasing polarity of the polymer. The diffusion coefficients for H2O in the polyimides studied either increase or pass through a weak maximum with increasing H2O activity, or concentration in the polymers. The latter behavior is probably due to a clustering of H2O molecules in the polyimides at higher H2O activities or concentrations. The diffusion coefficients for H2O decrease as the chain-packing density of the polyimides increases. The permeability coefficients for H2O vapor in 6FDA-based polyimide membranes either increase slightly or are constant as the H2O activity is increased. The experimental values of the permeability coefficients are consistent with the values determined from diffusion and solubility coefficients. The permeability of the polyimides to H2O vapor appears to be controlled by the solubility of H2O in the polymers. The polyimides studied exhibit a very high selectivity for H2O vapor relative to CH4, and therefore are potentially useful membrane materials for the dehydration of natural gas. ©1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号