首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermally stable polysilylenemethylenes (PSMs) with siloxane crosslinking moieties were successfully synthesized by chlorodephenylation of preformed poly(methylphenylsilylenemethylene) (PMPSM) and subsequent in situ alcoholysis/hydrolysis/condensation reactions. The simplified process and mild reaction conditions are quite advantageous. The crosslink density of these materials can be adjusted by the degree of chlorodephenylation, although an alkoxysilyl group remains to some extent. The resulting crosslinked PSMs have well defined structures in which the backbone is composed of MePhSiCH2 and Me(MeO)SiCH2 as well as Me(O1/2)SiCH2 as a crosslinking moiety. The resulting crosslinked PSMs exhibited glass‐transition temperatures ranging from 15 to 20 °C, whereas that of linear PMPSM was 22 °C. The crosslinked PSMs remained unchanged in weight below 300 °C, suggesting that they are thermally stable up to that temperature. The good solvent resistance caused by crosslinking as well as high thermal stability of these materials allow us to design new PSM‐based polymer blends and preceramic polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 416–422, 2002  相似文献   

2.
A novel class of crosslinkable aromatic polyketones with maleimide pendent groups were synthesized by Friedel–Crafts polymerization from 5-maleimido-isophthaloylchloride and various aromatic reagents. The synthesized polyketones showed a poor solubility. They were characterized by inherent viscosity measurements and infrared (IR) spectroscopy. Differential thermal analysis (DTA) revealed that their crosslinking occurred at relatiively lower temperatures (167–253°C) than did thermal polymerization of ordinary bismaleimides. The thermal-and thermooxidative stability of crosslinked resins were evaluated by dynamic thermogravimetric analysis (TGA) as well as by isothermal gravimetric analysis (IGA). They were stable in N2 up to 303–329°C and formed anaerobic char yield 50–62% at 800–C. The thermal stability of crosslinkable polyketones was significantly increased after curing.  相似文献   

3.
Four structurally different bisimidobenzoxazole monomers were synthesized, based on the reaction of two isomeric diaminobenzoxazoles, viz., 5-amino-2-(p-aminophenyl) benzoxazole and 5-amino-2-(m-aminophenyl) benzoxazole with maleic and citraconic anhydrides. The diamines were synthesized by a new route. The imides and the amic intermediates were characterized by elemental analysis, IR, NMR, and mass spectra. The imides could be thermally polymerized to crosslinked brittle polybisimidobenzoxazoles. The citraconimides polymerized at a lower temperature than the maleimide. Thermal stability of the cured resins was evaluated by TGA and was correlated to the structure of the polyimide. The polybismaleimidobenzoxazoles were stable up to about 500°C in N2, leaving 50–60% anaerobic char yield at 800°C, whereas polybiscitraconimidobenzoxazoles were stable up to 420°C. Comparison of the thermal behavior of similar polyimides based on oxydianiline revealed that incorporation of benzoxazole structure enhances the decomposition temperature, lowers the rate of decomposition, and enhances the anaerobic char yield at high temperature. Addition of diamines as chain-extending agents decreased the thermal stability of the resins without any change in the anaerobic char yield.  相似文献   

4.
A series of novel bismaleimides (BMIs) were prepared from maleic anhydride and polyurethane prepolymers based on MDI (4,4′-diphenylmethane diisocyanate) and polyether and polyester diols with various chain lengths. All the BMIs were characterized by IR, 1H-NMR, and elemental analysis. DSC studies indicated that the thermal polymerization of the BMIs could be carried out in the temperature range of 102–245°C, and that curing behavior was significantly affected by the molecular weight of the BMIs. The crosslinked BMI elastomers showed good mechanical properties and much better thermal stability than that of the traditional polyurethane elastomers. The glass transition temperatures, mechanical, and dynamic mechanical properties were dependent on the types of polyols used and the resultant crosslink densities due to various chain lengths of the BMIs. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Abstract

A series of novel bismaleimide (BMIs) resins were prepared from 4-maleimidophenyl isocyanate and oligoether diols and oligoester diols. All the BMIs were characterized by IR, 1H-NMR spectra and elemental analysis. DSC studies indicated that the thermal polymerization of the BMIs carried out in the 80–260°C range, and their curing behavior was significantly affected by the molecular weight of the BMIs. The poly(aminobismaleimide) resins (V1a-e, V2a-e) obtained by Michael addition of 4,4′-diaminodiphenylmethane and 4,4′-oxydianiline in 1-methyl-2-pyrrolidinone, led to elastic films showing good mechanical properties and better thermal stability than the traditional polyurethane elastomers.  相似文献   

6.
《Thermochimica Acta》1987,109(2):297-301
Several new polymethylol epoxy resins have been synthesised in a one pot reaction system and characterised. The new resins are derived from epichlorohydrine, formaldehyde and several aromatic phenols: phenol, biphenylol, bisphenol-A, bisphenol-S, sulphone, and DDT. The rate of crosslinking has been studied at different temperatures (120–180°C) by determining the amount of H2O evolved from the crosslinking reaction using a DuPont moisture evolution analyser; the activation energy of setting has been determined from Arrhenius plots. The results are 57.1, 50.0, 42.9, 75.2, 11.3 and 74.3 kJ mol−1 for resins IVI respectively. The set resins show good thermal stability and are resistant toward chemicals and solvents; these resins also set catalytically at room temperature.  相似文献   

7.
Abstract

An epoxy-based nonlinear optical (NLO) polymeric material incorporating 4-(4′-nitrophenylazo) phenylamine has been synthesized and subsequently functionalized with acryloyl groups. A glass transition temperature (T 8)of 108°C and a degradation temperature (air) of 251°C were recorded. After crosslinking at 160°C for 2 hours, the T 8 of the polymer increased to 146°C. In order to increase the nonlinear optical chromophore concentration and the crosslinking density, the crosslink-able NLO dye, 2,4-acryloyloxy (4′-phenylazo nitrobenzene), was processed and poled in this epoxy-based NLO material matrix in a manner similar to a typical guest-host system, and thermally crosslinked under the above condition in the poled phase. The crosslinked guest-host material was found to be amorphous with a T 8 of approximately 132°C. It also exhibits a second-order nonlinear optical coefficient d 33 of 14.14 pm/V at a maximum doping level of 33% by weight of the NLO dye, and retains 93% of its original d 33 value after being subjected to thermal treatment at 100°C for 168 hours. The behavior of the crosslinked polymer and the crosslinked guest-host polymer is discussed.  相似文献   

8.
A series of DABCO‐functionalized polysulfones were synthesized and characterized. The effect that crosslinking has on the membrane properties containing different degrees of functionalization was evaluated. These polymers showed good thermal stability below the fuel cell operation temperature, T < 100 °C, reflected by the TOD, TFD, and thermal durability. The water uptake increased as the percentage of DABCO groups increased and the crosslinked membranes showed lower capacity to absorb water than the non‐crosslinked ones favoring thus the dimensional stability of the first ones. Membranes in the chloride form containing low degree of functionalization exhibited the highest tensile strength values. The ionic conductivity of non‐crosslinked membranes varied as a function of the functionalization degree until a value of around 100% achieving a maximum value at 86%. However, the crosslinked ones showed satisfactory ionic conductivities for values higher than 100%. The behavior of these polymeric materials in alkaline solutions revealed a great alkaline stability necessary to be used as solid electrolytes in fuel cells. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1326–1336  相似文献   

9.
Crosslinked samples of polyethylene were prepared by electron irradiation of both high- and low-density polymers in the crystalline state. A further crosslinked sample was obtained by curing a high-density polyethylene by reaction with dicumyl peroxide at 180°C. The stress–strain–birefringenece relations were obtained on specimens cut from these samples at temperatures between 130 and 250°C. All samples showed a substantial decrease in stress-optical coefficient with increasing degree of crosslinking and with increasing temperature. The stress-optical properties at each temperature were extrapolated to zero degree of crosslinking to give quantities characteristic of the Gaussian network. Comparison of these properties with the theory of networks of rotational isomeric chains with both independent and interdependent rotation allows estimates to be obtained for (1) the transgauche energy differences in rotation around skeletal bonds and (2) the difference in principal optical polarizabilities for the CH2 group in the elastomeric state. This latter quantity is shown to be more nearly given by Denbigh's than by Bunn and Daubeny's bond polarizability values.  相似文献   

10.
The trifunctional five‐membered cyclic carbonate 2 and dithiocarbonate 3 were successfully synthesized by the reaction of trifunctional epoxide 1 with carbon dioxide and carbon disulfide, respectively. The crosslinking reactions of 2 with p‐xylylenediamine or hexamethylenediamine were carried out in dimethyl sulfoxide at 100 °C for 48 h to produce the corresponding crosslinked poly(hydroxyurethane)s quantitatively. The crosslinking reactions of 3 with both p‐xylylenediamine and hexamethylenediamine, followed by acetylation of thiol moiety, produced the corresponding crosslinked poly(thioester–thiourethane)s quantitatively. The obtained crosslinked poly(hydroxyurethane)s were thermally more stable than the analogous crosslinked poly(thioester–thiourethane)s, probably because of less thermal stability of thiourethane moiety than hydroxyurethane moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5983–5989, 2004  相似文献   

11.
This work reports a new direction of natural lignin valorization, which utilizes lignin to produce crosslinked polycaprolactone (PCL) via a straightforward synthesis. Lignin's hydroxyl groups of its multibranched phenolic structure allow lignin to serve as crosslinkers, whereas the aromatic groups serve as hard segments. The modified natural lignin containing alkene terminals is crosslinked with a thiol‐terminal PCL via Ru‐catalyzed photoredox thiol‐ene reaction. The high rate of gel contents measured for all crosslinked polymers, with the least being 84% of gel content, indicates efficient crosslinking. The prepared flat rectangular shape lignin‐crosslinked PCL sample demonstrates rapid thermal responsive shape memory behavior at 10 °C and 80 °C showing interconversion between a permanent and temporary shape. The melting temperature of the lignin‐crosslinked PCL is tunable by varying the percent weight of lignin. The 11, 21, and 30 wt % lignin demonstrated Tm of 42 °C, 35 °C, and 26 °C, respectively. The role of lignin as a crosslinker presented in this work suggests that lignin can serve as an efficient biomass‐based functional additive to polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2121–2130  相似文献   

12.
Poly(p-phenylene sulfide sulfonic acid) was thermally crosslinked for use as a cation exchange polymer with high thermal stability. The decomposition temperature (Td) of the polymer increases with an increase in the crosslinking temperature. The crosslinking reaction at 300°C in air resulted in the formation of a strongly acidic cation exchange polymer with a T = 467°C and having an SO2 bond, whose crosslinked structure was investigated using IR spectroscopy.  相似文献   

13.
A relatively low‐temperature crosslinking method for phenylethynyl (PE) end‐capped oligomides was developed. PE end‐capped oligomides are typically cured into crosslinked polyimides at 370 °C for about 1 h. The addition of a low viscosity mixed‐solvent of N‐methylpyrrolidinone (NMP)/dimethyl ether of polyethylene glycol (M = 250 g/mol), NMP/DM‐PEG‐250, or NMP/polyethylene glycol (M = 400 g/mol), NMP/PEG‐400, as film forming medium for PE‐end‐capped oligomides was investigated. Fourier transform infrared spectroscopy and 13C NMR showed that the mixed solvent addition was effective for achieving low‐temperature crosslinking of the ethynyl end‐caps over the temperature range 200–250 °C. The low temperature crosslinking process was explained by thermolysis of the PEG molecules over this temperature range forming free radical species such as ~CH2CH2O· or ~CH2CH2· which initiate cure of the ethynyl groups resulting in a cross linked polyimide membrane. The PEG solvents also provide a radical source for the degradation polymerization of the solvents to a water and NMP insoluble polymer, which formed a miscible blend with the crosslinked membrane. Glass transition temperature (differential scanning calorimetry) data and thermo gravimetric analysis data provide evidence for the miscible blend. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3950–3963, 2010.  相似文献   

14.
A series of crosslinked polyurethane acrylate solids with glass transition temperatures ranging from –49 to +65 °C was prepared by photopolymerization of specially formulated solvent-free resins. The kinetics of thermooxidative and thermal (in N2) degradation of these crosslinked acrylate networks at temperatures ranging from 100 to 400 °C was studied as a function of crosslink density using thermogravimetry. The polyacrylate network degradation rate decreased with the increase of crosslink density, while apparent activation energy of degradation increased. Polyacrylate thermal stability increase with crosslinking was explained by decreased rate of oxygen and volatile products diffusion and/or slowing of depolymerization due to increased radical recombination rate, and decreased chain segments mobility in systems with higher crosslink density.  相似文献   

15.
An acrylic pressure-sensitive adhesive (PSA) was synthesized in ethyl acetate at about 80 °C by the use of 2-ethylhexyl acrylate, ethyl acrylate, methyl acrylate and acrylic acid at presence of thermal radical initiator AIBN. The synthesized acrylic PSA was crosslinked at relatively low temperatures at about 110–125 °C using thermal crosslinkers selected from melamine-formaldehyde resins and benzoguanamine resins. The crosslinking process runs between carboxylic groups of acrylic PSA and reactive groups from investigated amine resins. The choice of suitable thermal reactive crosslinkers has significant and relevant influence at presence of organic acid catalysts on main performance of crosslinked PSA such as tack, peel adhesion and shear strength.  相似文献   

16.
Three different types of photocrosslinkable groups into a low band‐gap donor–acceptor‐conjugated polymer, namely poly{benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐ thieno[3,4‐b]thiophene} (PBT), were developed to comparatively investigate the effect of the photocrosslinkable groups on the thermal stability of bulk heterojunction solar cells. Compared with vinyl groups, bromine‐ and azide‐ photocrosslinkable groups are more prompt for photocrosslinking to yield a denser crosslinking network, probably due to the different crosslinking mechanisms and reaction rates. In contrast to the reference device decreasing to less than 10% of its initial efficiency value after 80 h of annealing at 150 °C, a great improvement in the thermal stability of performance of all these crosslinked functional copolymers devices demonstrates that photocrosslinking can effectively improve the thermal stability of the active layer by suppressing [6,6]‐phenyl‐C61‐butyric acid methyl diffusion and phase separation. Furthermore, the solar cells with crosslinked bromine‐ and azide‐functionalized PBT polymers showed very thermally stable photovoltaic device performance by retaining 78 and 66% of their initial device efficiency, respectively, whereas vinyl‐functionalized PBT devices retained only 51% of its initial value after long‐time thermal annealing. This suggests that an appropriate crosslinking network with homogenous active morphology could dramatically enhance the device stability without sacrificing the performance. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4156–4166  相似文献   

17.
Phenylmaleimide (PMI)- and phenylnadimide (PNI)-terminated bisphenol A polycarbonates (PCs) were prepared by solution or interfacial phosgenation processes, and their thermal crosslinking, both with and without a free radical initiator, and the thermal stability of the resultant network polymers were investigated. m-PMI PCs were prepared by interfacial phosgenation of bisphenol A and m-hydroxyphenylmaleimide, but p-hydroxyphenylmaleimide caused rapid phosgene hydrolysis under interfacial conditions and PCs from it could only be made by solution phosgenation. The degree of crosslinking of PMI PCs, as measured by their gel fraction, heated in the absence of a free radical initiator was generally higher at 250°C than at 300°C and increased with the concentration of PMI end groups. m- and p-PMI PCs form thermosets having nearly complete gel fractions by radical initiated curing at 150–200°C. The gel fraction of these thermosets decreases with exposure to higher temperatures (300°C). This behavior is attributed to BA PC chain degradation induced by nitrogen-containing maleimide reaction products. p-PNI PC was prepared by solution phosgenation and the thermal reaction of it in the presence of the initiator produced only a small increase in molecular weight. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
The article deals with synthesis, characterization, and polymerization of 5-norbornene-2,3-dicarboximide end-capped resins (bisnadimides) based on 4,4′-diaminodiphenylether, 1,4/1,3-bis(4′-aminophenoxy) benzene, 2,2′-bis[4-(4′-aminophenoxy)phenyl]propane, and bis[4-(4′-aminophenoxy)phenyl]sulphone. Both exo and endo bisnadimides were prepared by reacting the aromatic diamines with exo or endo nadic anhydride in glacial acetic acid at 120°C. The exo or endo bisnadimides could be distinguished on the basis of differences observed in IR or 1H-NMR spectra. Both thermal (in solid state) and metathetical polymerization (using WCl6/tetramethyltin catalyst and chlorobenzene solvent) of bisnadimides was carried out. Only exo bisnadimides could be polymerized using metathesis reaction whereas thermal polymerization of both endo and exo bisnadimide could be successfully carried out at 300°C in static air atmosphere. The polymers were highly crosslinked and insoluble in common organic solvents. The polymers obtained by metathesis polymerization were light brown in color whereas those obtained by thermal polymerization were dark brown in color. Thermal stability of the thermally polymerized exo or endo bisnadimides was comparable. These polymers were stable up to 400°C and decomposed in a single step above this temperature. The char yield at 800°C depended on the structure of the polymer and was in the 39–56% range. The polymers formed by metathesis polymerization showed a 1–3% weight loss in the temperature range 226–371°C and decomposed in a single step above 440°C. The char yields were higher in these polymers (53–71%) compared to those obtained by thermal polymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2323–2331, 1997  相似文献   

19.
Phthalonitrile endcapped oligomers containing aromatic ether and imide linkages have been synthesized and characterized. The phthalonitrile terminated oligomers were prepared in two step (one spot) method by the reaction of an excess amount of pyromellitc dianhydride (PMDA) with aromatic diamines, in a N,N-dimethylacetamide (DMAc)/toluene solvent mixture to form anhydride terminated oligomeric intermediate that was terminated by the reaction with 4-(aminophenoxy) phthaloitrile. The average molecular weights of the prepared oligomers were determined by GPC analysis. The oligomeric phthalonitrile monomers have been converted to network polymers using 4,4'-diaminodiphenyl sulfone (DDS) (5.0 wt %) curing additive at elevated temperatures. Differential scanning calorimetric (DSC) analysis was used to follow the polymerization as the oligomeric phthalonitrile/diamine mixtures and prepolymers. An isothermal rheometric analysis was conducted to determine the complex viscosity of the prepolymers during polymerization reaction. Viscosity increases as a function of time due to crosslinking, which depends upon the concentration and reactivity of the curing agent. The TGA analysis of cured resins showed superior thermal and thermo-oxidative stability. The temperature of 10% weight loss from TGA are in the range of 498-511 °C in N2 and 448–461 °C in air atmosphere. Char yield at 800 °C is 41.7–50.2% in air and 70.6–83.1% in N2.  相似文献   

20.
A series of crosslinked siloxane/poly(ethylene glycol) (Si–PEG) copolymers were synthesized from the reactive methoxy‐functional silicone resin (Si resin) and PEGs with different molecular weights via two kinds of crosslinking reactions during an in situ curing stage. One of the crosslinking reactions is the self‐condensation between two methoxy groups in the Si resin, and another one is an alkoxy‐exchange reaction between the methoxy group in the Si resin and the OH group in PEG. The synthesized crosslinked copolymers were characterized by Fourier transform infrared spectroscopy, DSC, and 13C NMR. The crosslinked copolymers were stable in a moisture‐free environment, but the Si? O? C linkages were hydrolyzed in humid conditions. The gel‐like solid polymer electrolytes (SPEs) were prepared by impregnating these crosslinked Si–PEG copolymers in a propylene carbonate (LiClO4/PC) solution. The highest conductivity reached 2.4 × 10?4 S cm?1 at 25 °C and increased to 8.7 × 10?4 S cm?1 at 85 °C. The conductivities of these gel‐type SPEs were affected by the content of LiClO4/PC, the molecular weights of PEGs, and the weight fraction of the Si resin. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2051–2059, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号