首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
On the Insertion into the Lanthanide–Carbon Bond. Synthesis and Structure of [Cp Sm(C6H5CH2NNO)]2 and [K(18-crown-6)Cp Yb(NCS)2] The compound [CpSm(CH2C6H5)(thf)] was investigated, regarding its reactions with small molecules. The main subject was to detect an insertion into the Ln–C bond. With N2O an insertion reaction is observed, yielding the dimer [CpSm(C6H5CH2NNO)]2 ( 1 ). The structural data of 1 was collected by a single crystal X-Ray diffraction analysis. (Space group P 1, Z = 1, a = 982.8(2) pm, b = 1052.2(2) pm, c = 1383.8(3) pm, α = 89.29(3)°, β = 73.64(3)°, γ = 66.41(3)°). In the dimer, the two Samarium ions are linked via an (η1 : η2) bridge by two benzyl diazotato ligands. A nearly planar six-membered central Sm2N2O2-ring is formend. Two pentamethylcyclopentadienyl ligands complete the coordination sphere of each Samarium ion, which are thus surrounded by four ligands each and have a distorted tetrahedral coordination geometry. An insertion of a SCN fragment in the Ln–C bond could not be observed. The substitution of the benzyl ligand leads to a polymeric chain structure. The new compound [K(18-crown-6)CpYb(NCS)2] 2 contains a tetrahedrally coordinated Yb(III)-ion. (Space group P21/n}, Z = 4, a = 1640.6(3) pm, b = 1482.2(3) pm, c = 1674.5(3) pm, β = 102.82(1)°).  相似文献   

2.
Protonation and Cu(II) complexation equilibria of L -phenyhilaninamide, N2-methyl-L-phenylalaninamide, N2, N2-dimethyl-L-phenylalaninamide, L -valinamide, and L -prolinamide have been studied by potentiometry in aqueous solution. The formation constants of the species observed, CuL2+, CuL, CuLH, CuL2H and CuL2H?2, are discussed in relation to the structures of the ligands. Possible structures of bisamidato complexes are proposed on the ground of VIS and CD spectra. Since Cu(II) complexes of the present ligands (pH range 6–8) perform chiral resolution of dansyl- and unmodified amino acids in HPLC (reversed phase), it is relevant for the investigation of the resolution mechanism to know which are the species potentially involved in the recognition process.  相似文献   

3.
The formation of ternary nitridometalates from the elements in the case of the systems Li—Cr, V, Mn—N leads to compounds which contain the transition metals in the highest (VV, CrVI) or a comparably high (MnV) oxidation state. In the corresponding calcium and strontium systems, the transition metals show a lower oxidation state (VIII, CrIII, MnIII). Transition metals with intermediate oxidation states (CrV, MnIV) are present in the quaternary (mixed cation) compounds Li4Sr2[CrN6], Li6Ca2[MnN6], and Li6Sr2[MnN6] (R3¯(#148), a = 585.9(3) pm, c = 1908.6(4) pm, Z = 3), as well as in the solid solution series Li6(Ca1—xSrx)2[MnN6].  相似文献   

4.
Detailed measurements on the kinetics and stoichiometry of the oxidation of N-methylformamide and N,N-dimethylformamide by aquosilver (II) ions are reported. Four Ag ions are consumed for each amide, and the reaction is first order in [Ag] and first order in [amide]. The reaction is inversely dependent on acidity in the range of 1.5–5.0M HClO4. The oxidation rate is independent of [AgI] and ionic strength. The proposed reaction mechanism and activation parameters are compared with those found for the oxidation of amides by other oxidants such as cobalt(III) and manganese(III).  相似文献   

5.
Nd4N2Se3 and Tb4N2Se3: Two non‐isotypical Lanthanide(III) Nitride Selenides The non‐isotypical nitride selenides M4N2Se3 of neodymium (Nd4N2Se3) and terbium (Tb4N2Se3) are formed by the reaction of the respective rare‐earth metal with sodium azide (NaN3), selenium and the corresponding rare‐earth tribromide (MBr3) at 900 °C in evacuated silica ampoules after seven days. Each of them crystallizes monoclinically in the space group C2/c with Z = 4 for Nd4N2Se3 (a = 1300.47(4), b = 1009.90(3), c = 643.33(2) pm, β = 90.039(2)°) and in the space group C2/m with Z = 2 for Tb4N2Se3 (a = 1333.56(5), b = 394.30(2), c = 1034.37(4) pm, β = 130.377(2)°), respectively. The crystal structures differ fundamentally in the linkage of the structure dominating N3‐ centred (M3+)4 tetrahedra. In Nd4N2Se3, the [NNd4] units are edge‐linked to bitetrahedra which are cross‐connected to [N(Nd1)(Nd2)]3+ layers via their remaining four corners, whereas the [NTb4] tetrahedra in Tb4N2Se3 share cis‐oriented edges to form strands [N(Tb1)(Tb2)]3+. Both structures contain two crystallographically different M3+ cations, that show coordination numbers of six and seven (Nd4N2Se3) or twice six (Tb4N2Se3), respectively, relative to the anions (N3‐ und Se2‐). Each of the two independent kinds of Se2‐ anions provide the three‐dimensional linkage as well as the charge balance. The particular axial ratio a/c and the monoclinic reflex angle offer two choices for fixing the unit cell of Tb4N2Se3.  相似文献   

6.
The Schiff base‐containing pendant monoaza crown ether HL1, HL2, HL3 and HL4 have been synthesized by condensation of salicylaldehyde with N‐(4‐aminoaryl) monoaza crown ethers, which were prepared conveniently from 4‐nitro‐N, N‐di(hydroxyethyl) aniline or 4‐nitrobenzyl chloride via cyclization or condensation and reduction. The structures of HL1—HL4 were verified by 1H NMR, IR spectra, MS and elemental analysis. Moreover, the oxygenation constants (KO2) and thermodynamic parameters (δH0 and δS0) of their cobalt(II) complexes were determined in the range of ?5 °C to 25 °C, and the effect of crown ring bonded to a Schiff base on the dioxygen affinities of cobalt(II) complexes was also observed as compared to the uncrowned analogue (CoL).  相似文献   

7.
N‐Vinylpyrrolidone polymerization photoinitiated at 365 and 546 nm by azidopentaammine cobalt(III) {[Co(NH3)5N3]2+} was investigated at room temperature in an argon atmosphere. By excitation into the ligand to metal charge transfer (LMCT), the cobalt complex showed an efficient photoredox process leading to the formation of a cobalt(II) and an azide radical (N, Φphotoredox = 0.24). The same process was found to occur by excitation into the ligand field band with a low but not negligible quantum yield (Φphotoredox = 0.016). Two different domains were clearly present when the plot of the rate of polymerization as a function of the cobalt(III) complex was studied; for [Co(III)] < 2.0 × 10−4 M, the termination step mainly involved a mutual annihilation of growing radicals whereas an oxidative termination was present in the range of 2.0 × 10−4 M < [Co(III)] < 1.0 × 10−3 M. Within the former domain the rate of polymerization (Rp ) varied with the first power of the monomer concentration and with the square root of the absorbed light intensity while for the latter domain the Rp was proportional to the monomer concentration and absorbed light intensity. Further investigations using the viscosity‐average molecular weight data allowed us to corroborate the proposed polymerization mechanism. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3997–4005, 2000  相似文献   

8.
Acyl- and Alkylidenephosphanes. XXXV. Bis[ N -(trimethylsilyl)iminobenzoyl]phosphanides of Lithium and Zinc – Syntheses as well as NMR Spectroscopic, Structural, and Quantumchemical Studies From the reaction of bis(tetrahydrofuran)lithium bis(trimethylsilyl)phosphanide with two equivalents of benzonitrile in 1,2-dimethoxyethane, the yellow dme complex ( 2 a ) of lithium bis[N-(trimethylsilyl)iminobenzoyl]phosphanide ( 2 ) was obtained in 69% yield. However, the intermediate {1-[N-lithium-N-(trimethylsilyl)amido]benzylidene}trimethylsilylphosphane ( 1 ), formed by an analogous 1 : 1 addition in diethyl ether, turned out to be unstable and as a consequence could be characterized by nmr spectroscopic methods only; attempts to isolate the compound failed, but small amounts of the neutral complex 2 b , with the ligands benzonitrile and tetrahydrofuran coordinated to lithium, precipitated. The reaction of compound 2 with zinc(II) chloride in diethyl ether gives the orange-red spiro-complex zinc bis{bis[N-(trimethylsilyl)iminobenzoyl]phosphanide} ( 3 ); this complex is also formed from bis[N-(trimethylsilyl)iminobenzoyl]phosphane ( 4 ), easily amenable by a lithium hydrogen exchange of 2 a with trifluoroacetic acid [18], and zinc bis[bis(trimethylsilyl)amide]. As derived from nmr spectroscopic studies and x-ray structure determinations, compounds 2 a {δ31P +63.3 ppm; P21/n; Z = 4; R1 = 0.067}, 2 b {δ31P +63.3 ppm; P21/c; Z = 4; R1 = 0.063}, 3 {δ31P +58.2 ppm; C2/c; Z = 4; R1 = 0.037} and 4 {δ31P +58.1 ppm [18]} exist as cyclic 3-imino-2λ3σ2-phosphapropenylamides and -propenylamine, respectively, in solution as well as in the solid state. Unlike hydrogen derivative 4 the bis[N-(trimethylsilyl)iminobenzoyl]phosphanide fragments N,N′-coordinating either a lithium or a zinc cation are characterized by almost completely equalized bond lengths; typical mean distances and angles are: PC 180.3 and 178.7; CN 130.5 and 131.8; N–Si 175.3 and 179.3; N–Li 202.3; N–Zn 203.5 pm; CPC 108.8° and 110.5°; PCN 130.9° and 132.9°; CN–Li 113.0°, CN–Zn 117.4°; N–Li–N 104.6°; N–Zn–N 108.8°. Alterations in the shape of the six membered chelate rings, caused by an exchange of the 3-imino-2λ3σ2-phosphapropenylamide or related 2λ3σ2-phospha-1,3-dionate units for the corresponding phosphorus free ligands, are discussed in detail. The results of quantumchemical DFT-B3LYP calculations coincide very well with the experimentally obtained findings.  相似文献   

9.
The kinetics of the solvolytic aquation of cis-(Bromo) (imidazole) bis(ethylenediamine) cobalt (III) and cis-(Bromo) (N-methylimidazole) bis(ethylenediamine) cobalt(III) have been investigated in aqueous methanol media with methanol content 0–80% by weight and at temperatures 40–55°C. The pseudo-first order rate constant decreases with increasing methanol content. Plots of log k vs. D (where Ds is the bulk-dielectric constant of the solvent mixture) and log k vs. the Grunwald-Winstein Y-solvent parameter are nonlinear, the curvature of the plots is relatively more significant for the imidazole complex. The plots of log k vs. molfraction of methanol (XMeOH) for both the substrates also deviate from linearity, the deviation being less and less marked, particularly for the N-methyl imidazole complex, as the temperature is increased. Hence preferential solvation phenomenon appears to be less significant when the N-H proton of imidazole is replaced by -CH3 group. The plots of calculated values of the transfer free energy of the dissociative transition state, cis-{[(en)2Co(B)]3+}* (B = imidazole, N-methylimidazole), relative to that of the initial state, cis-[Co(en)2(B)Br]2+, for the transfer of the ions from water to the mixed solvent, against XMeOH exhibit maxima at XMeOH = 0.06, 0.27, and 0.12, 0.36 and minima at XMeOH = 0.12 and 0.19 for cis-[(en)2Co(imH)Br]2+ and its N-methylimidazole analogue respectively which are in keeping with the solvent structural changes around the initial state and transition state of these substrates as the solvent composition is varied. Plots of activation enthalpy and entropy against molfraction of the solvent mixtures exhibit maxima and minima. This type of variations of the activation parameters, ΔH and ΔS, with XMeOH speaks of the enthalpy and entropy changes associated with the solvent-shell reorganization of the complex ions both in the initial and in the transition states which contribute appreciably to the overall activation enthalpy and entropy of the aquation reaction.  相似文献   

10.
The bidentate diphosphine ligand, 3,3′-oxybis[(dipenylphosphino)methylbenzene] ( 1 ) forms monomeric, trans-square-planar complexes MX2( 1 ) (M = Ni, Pd, Pt; X = Cl?, Br? I?, and, in part, N, NCS?, CN?, NO) as well as Pt(H)Cl( 1 ), Pt(H)Br( 1 ), and RhCl(CO)( 1 ). Polymeric species have been observed with substitutionally inert metal centres: trans-[PtCl2( 1 )]2 and cis-[PtCl2( 1 )]n (mean value of n ≈ 4–5) 31P-NMR, and selected IR and UV/VIS parameters are reported. Ligand 1 shows a marked preference for trans-spanning and monomeric chelate formation, despite its various degrees of freedom of internal rotation in the lignad backbone. The readily available ligand 1 as well as analogues with other donor atoms, therefore, appear useful in most potential applications of trans-spanning chelate ligands. The crystal structure of AgCl( 1 )·0.5 (CH3)2C?O·0.39 C6H12 (space group C2/c,a = 21.02 Å, b = 14.57 Å, c = 24.79 Å, β = 99.77°, V = 7531.4 Å3, Z = 8) confirms the presence of three-coordinate Ag( I ), with a coordination intermediate between a trigonal-planar and a T-shaped geometry (P-Ag-P = 145.61(8)°).  相似文献   

11.
Synthesis and Structure of (NH4)2[(AuI4)(AuI22-I4))], a Iodoaurate(III) with I42? Anions as Ligands (NH4)2[(AuI4)(AuI22-I4))] is obtained in a sealed glass ampoule by slow cooling of a mixture of NH4I, Au, and I2 beforehand heated to 500°C. The compound forms black crystals decomposing slowly under loss of I2. It crystallizes in the orthorhombic space group Pnma with a = 1357.7(1), b = 2169.9(2), c = 755.6(3) pm, and Z = 4. The crystal structure is built up by NH cations and square-planar [AuI4]? anions as well as [AuI22-I4)]? groups being linked together by the I ligands to form chains. The distances Au? I are in the range of 258.7(2) to 262.4(2) pm. The nearly linear I anions are characterized by a short central I? I distance of 270.9(3) pm and two longer outer distances of 338.7(2) pm.  相似文献   

12.
The reaction between tris(acetylacetonato)magnanese(III) and hexa(N,N-dimethylformamide)iron(III) perchlorate in acetonitrile proceeds in two stages. The first stage corresponds to the reaction of pentacoordinated Fe(DMF) with Mn(acac)3, and the rate-determining step of the second stage consists mainly in the elimination of a DMF ligand from Fe(DMF) to yield Fe(DMF) which reacts rapidly with the manganese complex. The formation of Fe(DMF) is catalyzed by Mn(acac)3, this catalytic effect being decreased by manganese products. The rate-determining step for the formation of Fe(acac)3 is the transfer of the first acetylacetonate to yield Fe(acac)2+. The final products of iron depend on the ratio of reactant concentrations. With Mn or Fe in excess, Fe(acac)3 or Fe(acac)2+ are mainly produced.  相似文献   

13.
Rb2Co3(H2O)2[B4P6O24(OH)2]: A Borophosphate with ‐Tetrahedral Anionic Partial Structure and Trimers of Octahedra (Co O12(H2O)2) Rb2Co3(H2O)2[B4P6O24(OH)2] is formed under mild hydrothermal conditions (T = 165 °C) from mixtures of RbOH(aq), CoCl2, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure (orthorhombic system) was solved by X‐ray single crystal methods (space group Pbca, No. 61; R‐values (all data): R1 = 0.0699, wR2 = 0.0878): a = 950.1(1) pm, b = 1227.2(2) pm, c = 2007.4(2) pm; Z = 4. The anionic partial structure consists of tetrahedral [B4P6O24(OH)28–] layers, which contain three‐ and nine‐membered rings. CoII is octahedrally coordinated by oxygen and oxygen and H2O ligands, respectively (coordination octahedra CoO6 and CoO4(H2O)2). Three adjacent coordination octahedra are condensed via common edges to form trimeric units (CoO12(H2O)2). The oxidation state +2 of cobalt was confirmed by magnetic measurements. The octahedral trimers are quasi‐isolated. No long‐range magnetic ordering occurs down to 2 K. Rb+ is disordered over three crystallographically independent sites within channels of the structure running parallel [010]; the coordination sphere of Rb+ is formed by nine oxygen species of the tetrahedral layers, one OH group and one H2O molecule.  相似文献   

14.
X-Ray Structural Analyses of Cyclododecasulfur (S12) and Cyclododecasulfur-1-Carbon-disulfide (S12 · CS2) S12 · CS2 crystallizes in space group R&3macr;m–D with hexagonal lattice constants a = 1066.8(3), c = 1155.1(4) pm, Z = 3, dcalc. = 2.04 g · cm?3. The S12 molecules occupy sites of D3d symmetry with bond distance (dss) of 205.4(1) pm, bond angles (α) of 105.80(5) and 106.65(6)º and torsional angle (τ) of 87.20(7)º. The CS2 molecule interacts only very weakly with the S12 units. S12 crystallizes in space group Pnnm–D with lattice constants a = 472.5(2), b = 910.4(3), c = 1453.2(3) pm, Z = 2, dcalc = 2.045 g · cm?3. The molecules with mean parameters d = 205.2 pm, α 106.6º, τ 88.0º occupy sites of C2h symmetry.  相似文献   

15.
Synthesis of Copper and Silver Complexes with Pentadentate N,S and Hexadentate N,O Chelate Ligands – Characterization and Crystal Structures of {Cu2[C6H4(SO2)NC(O)]2(C5H5N)4}, {Cu2[C5H3N(CHNC6H4SCH3)2]2}(PF6)2, and {Ag[C5H3N(CHNC6H4SCH3)2]}PO2F2 In the course of the reaction of copper(II)-acetate monohydrate with 2,2′-bisbenzo[d][1,3]thiazolidyl in methanol the organic component is transformed to N,N′-bis-(2-thiophenyl)ethanediimine and subsequently oxidized to the N,N′-bis-(2-benzenesulfonyl)ethanediaciddiamide H4BBSED, which coordinates in its deprotonated form two Cu2+ ions. Crystallisation from pyridine/n-hexane yields [Cu2(BBSED)(py)4] · MeOH. It forms triclinic crystals with the space group P1 and a = 995.5(2) pm, b = 1076.1(3) pm, c = 1120.7(2) pm, α = 104.17(1)°, β = 105.28(1)°, γ = 113.10(1)° and Z = 1. In the centrosymmetrical dinuclear complex the copper ions are coordinated in a square-pyramidal arrangement by three nitrogen and two oxygen atoms. The Jahn-Teller effect causes an elongation of the axial bond by approximately 30 pm. The reactions of the pentadentate ligand 2,6-Bis-[(2- methylthiophenyl)-2-azaethenyl]pyridine BMTEP with salts of copper(I), copper(II) and silver(I) yield the complexes [CU2(BMTEP)2](PF6)2, [Cu(BMTEP)]X2 (X = BF, C1O) and [Ag(BMTEP)]X (X = PO2F, ClO). [Cu2(BMTEP)2](PF6)2 crystallizes from acetone/diisopropyl- ether in form of monoclinic crystals with the space group C2/c, and a = 1833.2(3) pm, b = 2267.30(14) pm, c = 1323.5(2) pm, β= 118.286(5)°, and 2 = 4. In the dinuclear complex cation with the symmetry C2 the copper ions are tetrahedrally coordinated by two bridging BMTEP ligands. The Cu? Cu distance of 278.3pm can be interpreted with weak Cu? Cu interactions which also manifest itself in a temperature independent paramagnetism of 0.45 B.M. The monomeric silver complex [Ag(BMTEP)]PO2F2 crystallizes from acetone/thf in the triclinic space group P1 with a = 768.7(3) pm, b = 1074.0(5) pm, c = 1356.8(5) pm, α = 99.52(2)°, β = 96.83(2)°, γ = 99.83(2)° and Z = 2. The central silver ion is coordinated by one sulfur and three nitrogen atoms of the ligand in a planar, semicircular arrangement. The bond lengths Ag? N = 240.4–261.7 and Ag? S = 257.2 pm are significantly elongated in comparison with single bonds.  相似文献   

16.
A new synthetic route for preparing multidirectional ligands was developed by using 2,4,6‐trichloro‐1,3,5‐triazine (cyanuric chloride) as core. The reaction included the selective substitutions of 4‐aminobenzoic acid onto three chlorides of the triazine ring via a stepwise manner at 1:1, 1:2, or 1:3 equiv. and 0, 25, 130°C, respectively. An efficient synthesis of a novel class of “multidirectional ligands” has been developed based on high‐yielding chloride substitutions of 2,4,6‐trichloro‐1,3,5‐triazine by amines. Sixteen new mono‐, di‐, tri‐, and tetra‐nuclear Fe(III) and Cr(III) complexes involving tetradenta Schiff bases N,N′‐bis(salicylidene)ethylenediamine‐(salenH2) or bis(salicylidene)‐o‐phenylenediamine‐(salophenH2) with two new 1,3,5‐triazine derived multidirectional ligands were synthesized and characterized by means of elemental analysis, 1H NMR, FT‐IR spectroscopy, LC‐MS analysis, AAS, thermal analysis, and magnetic susceptibility measurements. The complexes were also characterized as low‐spin distorted octahedral Fe(III) and Cr(III) bridged by carboxylic acids. It was understood that the [{Fe(salen)/(salophen)}2O] and [{Cr(salen)/(salophen)}2O] containing compounds could be represented by the electronic structure of te and te. J. Heterocyclic Chem., (2011).  相似文献   

17.
Preparation and Crystal Structure of trans-(Ph4As)2[OsCl2(NCS) (SCN) ], Vibrational Spectra and Normal Coordinate Analysis By treatment of trans-[OsCl2I4]2? with (SCN)2 in dichloromethane a mixture of different linkage isomers is formed, from which trans-[OsCl2(NCS)(SCN)]2? has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X-Ray structure determination on a single crystal of trans-(Ph4As)2[OsCl2(NCS)(SCN)] (triclinic, space group P 1 , a = 12.505(5), b = 12.056(5), c = 19.833(5) Å, α = 108.047(5)°, β = 91.964(5)°, γ = 117.048(5)°, Z = 2) reveals that two cis-positioned Thiocyanate(N) groups are coordinated with Os? N? C angles of 172.1° and 173.0° and two cis-positioned Thiocyanate(S) groups are coordinated with Os? S? C angles of 106.9° and 108.7°. Using the molecular parameters of the X-Ray determination the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salt of the linkage isomer are assigned by a normal coordinate analysis based on a modified valence force field. The valence force constants are fd(OsN) = 1.63 and fd(OsS) = 1.30 mdyn/Å. Taking into account the trans influence a good agreement between observed and calculated frequencies is achieved.  相似文献   

18.
The characteristics of the photoinduced electron transfer reaction from polystyrene pendant tris(2,2′-bipyridyl)ruthenium (II) complex [Ru(bpy)] to methylviologen (MV2+) were studied. The rate constant k1 from the excited state of the complex, Ru(bpy), to MV2+ were determined for both the polymeric and monomeric complexes from the lifetime τ of Ru(bpy) and the quenching rate of Ru(bpy) by MV2+. The polymer pendant Ru(bpy) showed three kinds of τ components ranging from 7 to 474 ns, in contrast to the monomeric complex, which showed one component of 350 ns. The k1 values for both complexes were almost the same, on the order of 108 L/mol s. The photoinduced electron transfer from solid-phase Ru(bpy) to liquid-phase MV2+ was realized by utilizing the polymer complex, and the solid–liquid interphase reaction system is discussed.  相似文献   

19.
The title compound and its potassium analog have been prepared from corresponding aqueous solutions of 99TcO at pH ≈? 2 with SO2 as a reducing agent. An X-ray structure determination of the Na-salt showed Tc coordinated to the tetradentate N(CH2COO) ligand (NTA). Two Tc-NTA moieties are joined via two bridging O-atoms into a four-membered Tc2O2 ring. The observed diamagnetism, a strong absorption band at 19 950 cm?1, and a short Tc-Tc distance of 2.363 Å are typical for the Tc2O2-fragment with its strong metal-metal interaction. The structural trans-influence at Tc and the network of H-bonds are consistent with Tc in oxidation state IV.  相似文献   

20.
[Li(THF)4][[NN]2Nd2Cl25-O)Li3] ( 2 ) ([NN]3– = ([Me3SiNCH2CH2)3N]3–) was prepared by transmetallation of Li3[NN] with anhydrous neodymium trichloride in THF. After recrystallization from diethylether/pentane (1 : 2) light blue crystals of 2 were obtained, which were characterized by single crystal X-ray diffraction. Space group: P21/n, Z = 4, lattice dimensions at 203 K: a = 1260.8(3), b = 3832.5(8), c = 1569.2(3) pm, β = 106.07(3)°, R1 = 0.0541. In the anion of 2 a nearly trigonal bipyramidal [Nd2Li35-O)]7+ unit is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号