首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The lowest-energy N4 is computed ab initio to be the planar C2h(3Bu) open-chain structure 13 . The open-chain N4 singlet-state structures dissociate on geometry optimization. The tetraazatetrahedrane Td structure 1 and the tetrazete D2h structure 2 are minima at MP 2/6-31G *. However, both are higher in energy than 13 (24.1 and 21.2 Kcal/mol [UQCISD ) (T )(full)/6-311+G *//MP 2/6-31G * + ZPE (MP 2/6-31G )*, respectively]. The energy of 13 is 157.5 kcal/mol higher than that of two N2(1∑ molecules [UQCISD (T )(Full)/6-311+G *//MP 2/6-31G *] © 1993 John Wiley & Sons, Inc.  相似文献   

2.
The stable and transition structures of N4X (X = O, S, Se, Te) series with singlet state are optimized with the ab initio (MP2) and density functional theory (B3LYP) methods using the 6‐311+G(d) basis set. The ring isomers are found to be the global minima for N4O, N4S, N4Se, and the chain isomer is the minimum for N4Te. The stabilities are studied by evaluating the dissociation barriers with respect to dissociation. The reactants and products connected by transition structures are determined by applying the intrinsic reaction coordinate (IRC) calculations. The C2v, C3v and ring isomers decompose into linear NNX and N2 molecules, however, the chain isomers decompose into cyclic N2X and N2 firstly. A new possible isomerization mechanism between the cyclic and linear structures of N2X series is studied. The cyclic structures of N2X convert into linear structures easily with the very low barriers. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

3.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   

4.
Stable molecular structures of heterocubane systems B4N4H8 2 and Be4O4H8, isoelectronic to the cubane molecule, are investigated by ab initio (RHF/6-31G**, MP2(full)/6-31C**, and MP2(full)/6-311+ + G**) methods and are shown to be highly thetmodynamically stable. Decomposition of structure 2 into two 1,3,2,4-diazadiboroethidine molecules 6 or four iminobomne NBNH molecules 11 is an endothermal process taking 10.1 (RHF/6-31G**), 39.6 (MP2(full)/6-31G**) kcaUmole and 140.6 (RHF/6-31G**), 161.4 (MP2(full)/6-31G**) kcal/mole, respectively. Decomposition of structure 3 into two 1,3,2,4-dioxydi-beryllothidine molecules 12 or four molecules 13 is also an endothermal reaction taking 22.1 (RHF/6-31G**), 39.8 (MP2(full)/6-31G**) kcal/mole and 127.1 (RHF/6-31G**), 155.2 (MP2(full)/631G**) kcal/mole, respectively. The geometrical characteristics of simple molecules BeH2 15, Be2 16 and 17, Be2H2 18, Be2H4 19, BeO 20, and Be2O2 21 are calculated. Translated from Zhumal Struktumoi Khim ii, Vol. 41, No. 1, pp. 3-13, January–February, 2000  相似文献   

5.
The potential energy surface of HPS2 system containing nine isomers and fifteen transition states is obtained at MP2/6-311++G(d, p) and QCISD(t)/6-311++G(3df, 2p)(single-point) levels. On the potential energy surface, the lowest-lying trans-HSPS(E1) is found to be thermodynamically the most stable isomer followed by cis-HSPS(E2) and HP(S)S(C2v, E3) at 3.43 and 14.17 kJ/mol higher, respectively. The computed results show that species E1, E2, E3, stereo HP(S)S(Cs, E4) with PSS three-membered ring, isomers trans-HPSS(E5) and cis-HPSS(E6) which coexist with E4 are kinetically stable isomers. The products E6 and E5 in the reaction of HP with S2 can be isomerized into higher kinetic stable isomer E4 with 65.75 and 71.73 kJ/mol reaction barrier height, respectively. The predicated results may correct the possible inaccurate conclusion in that the product was experimentally assigned as isomer cis-HPSS(E6).  相似文献   

6.
A detailed singlet potential energy surface of [H,P, C,S] system is investigated by means of the MP2 and QCISD(T) methods. Eight isomers are located on the potential energy surface, and at the final QCISD(T)/6-311++G (3df,2p)//MP2/6-311++G(d,p) level with zero-point energy correction, the chainlike isomer HPCS is found to be kinetically and thermodynamically the most stable species followed by the chainlike HSCP, planar three-membered ring HC(S)P, chainlike HCPS, and stereo three-membered ring HP(C)S, which are predicted to be also kinetically stable isomers and should be experimentally observable provided that accurate experimental conditions are available. The dissociation processes from the kinetically and thermodynamically most stable species HPCS to the low-lying molecular dissociation fragments are not more favorable in energy than the isomerization process from HPCS to HSCP. Therefore, the experimental observation for potential isomer HSCP with C ≡ P triple bond is possible by means of photoisomerization technology using HPCS as precursor.  相似文献   

7.
The equilibrium geometries and fundamental frequencies of Na2S are calculated at HF, MP2(FC, FU), and MP3 with the 6–31G(d) basis set and at HF and MP2(FC, FU) with the 6–31G(d) basis set, respectively. The total energy at MP2(FU)/6–31G(d)-optimized geometry is computed at MP4 with 6–311G(d, p), 6–311 + G(d, p), and 6–311G(2df, p), at QCISD(T)/6–311G(d, p), and at MP2/6–311G(3df, 2p) levels, respectively. The dissociation energy, the atomization energy, and the heat of formation for Na2S are evaluated using the G1 and G2 models. The calculated results indicated that Na2S in its ground state was a bent structure (C2v). Electron correlation corrections on the bending angle are very significant. The equilibrium geometrical parameters are Re(Na-S) = 2.45 Å and ∠Na-S-Na = 111.13° at the MP2(FU)/6–31G(d) level. The theoretically estimated dissociation energy, total atomization energy, and heat of formation are 67.07, 117.55, and 0.35 kcal mol−1, respectively, at 298.15 K. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
The total Mulliken charges on the C and N atoms, populations of the S-trans-(N1) conformers, and rotation barriers in the molecules of 2-vinyl-5-R-tetrazoles (R = H, CH3, CH = CH2, C6H5, CH2Cl, CF3) were calculated ab initio (HF/6-31G**, MP2/6-31G**). The results were compared with the 1H and 13C NMR data for these compounds.  相似文献   

9.
Guan  Jun  Zhang  Shaowen  Xu  Wenguo  Li  Qianshu 《Structural chemistry》2004,15(2):121-132
Ab initio molecular orbital theory and density functional theory have been employed to study N14 cluster with low spin at the HF/6-31G*, B3LYP/6-31G*, B3PW91/6-31G*, BP86/6-31G*, and BHLYP/6-31G* levels of theory. Twelve isomers were studied, including one previously investigated cage molecule. The most stable isomer of N14 is a C 2h -symmetric molecule that contains two separated five-membered nitrogen rings connected by a —N=N—N=N— bridge. The second, third, and fifth most stable isomers each have one five-membered nitrogen ring. The theoretical results suggest that the five-membered nitrogen ring gives rise to a particularly stable structural unit, and the more side chains that the five-membered nitrogen ring links with, the less stable the structure will become.  相似文献   

10.
Different mechanisms for the alkaline hydrolysis of oxo and aza‐γ‐lactam rings have been studied by ab initio calculations at the MP2/6‐31+G*//MP2/6‐31+G* and B3LYP/6‐31+G*//B3LYP/6‐31+G* levels. The tetrahedral intermediate can undergo two different reactions, the cleavage of the C2−N2 bond (the classical mechanism) and the cleavage of the C2−X6 bond (X=O, N). Both compounds present similar energy barriers for the classical fragmentation, and show considerably lower barriers for the alternative mechanism. Because of this reactivity, the compounds studied are expected to be β‐lactamase inhibitors.  相似文献   

11.
We made ab initio electronic calculations of the structure and energetics of mixed hypermetalated hydrogen oxides, Li2NaOH and LiNa2OH. There exist five equilibrium geometries for each complex. In all levels of calculation the global minimum structure for Li2NaOH has C2v symmetry and a large distance between sodium and oxygen, 4.24 Å (MP2/6-31G*). The dissociation energies to all possible products were also calculated. Li2NaOH → Na + Li2OH δH = +25.33 kcal/mol (at MP4/6-311++G**//6-31G* + ZPE scaled by 0.9). All other dissociation processes are highly endothermic. Similar procedures were applied to LiNa2OH. The global minimum structure for LiNa2OH belongs to point group Cs. It is also endothermic to all possible dissociation paths. LiNa2OH →Na + LiNaOH δH = +12.72 kcal/mol (at MP4/6-311++G*//6-31G* + ZPE scaled by 0.9). The nuclear repulsion energy is crucial in energetics of the structures. The distribution of electron density and bonding properties for these equilibrium structures were analyzed.  相似文献   

12.
 Ab initio molecular orbital calculations for N9, N 9 and N+ 9 isomers were carried out at the HF/ 6-31G*, B3PW91/6-31G*, B3LYP/6-31G* and MP2/ 6-31G* levels of theory. Stable equilibrium geometric structures were determined by harmonic vibrational frequency analyses at the HF/6-31G*, B3PW91/6-31G* and B3LYP/6-31G* levels of theory. The most stable free-radical N9 cluster is structure 1 with C 2 v symmetry and that of anion N 9 is structure 3 with C s symmetry. Only one stable structure of the N+ 9 cation with C 2 v symmetry was predicted. Their potential application as high-energy-density materials has been examined. Received: 15 June 1999 / Accepted: 11 October 1999 / Published online: 14 March 2000  相似文献   

13.
Vinyloxyboranes, CH2?CH? ;O? ;BR2, are shown by ab initio molecular orbital theory to be more stable than the isomeric β-aldoboranes, R2B? CH2? CH?O, by ca. 19 kcal/mol. The MP2/6-31G*/6-31G* + ZPE barrier for the [1,3] boron shift is only 10.9 kcal/mol (R ? Me) relative to the aldoborane. Other C2H5BO isomers (β-ketoboranes, boraepoxides and organoboron oxides), which are related to the proposed stages in the carbonylation reaction of boranes, are shown to be plausible intermediates. However, some of the computed barriers for methyl group migrations are unrealistically large, up to ca. 63 kcal/mol.  相似文献   

14.
The hydrogen-bonded structures of the CH3OH complexes with CF4, C2F2, OC, Ne, and He are designated as the starting points for geometry optimizations without and with counterpoise (CP) correction at MP2 level of theory with the basis sets 6-31+G*, 6-31++G**, and 6-311++G**, respectively. Tight convergence criteria are applied throughout all geometry optimizations in order to reduce the computational errors. According to the optimizations without CP correction, a blue-shifted O–H···Y (where Y = F, O, Ne, or He) hydrogen bond exists in all these five complexes. The magnitudes of blue shifts of ν(O–H) of the former four complexes with respect to that of CH3OH are reduced greatly when the polarization and diffuse functions of the hydrogen atoms are added (results from 6-31+G* versus those from 6-31++G**). However, for the complexes CH3OH–CF4 and CH3OH–C2F2, our optimizations using the CP corrections did not find the hydrogen-bonded structure to be a stationary point. The energy minimum of both the complexes corresponds to a non-hydrogen-bonded structure.  相似文献   

15.
Ab initio HF/6-31+G*, MP2/6-31+G*, B3LYP/6-31+G* level calculations have been performed on HSe-NH2 to estimate the Se-N rotational barriers and N-inversion barriers. Two conformers have been found withsyn andanti arrangement of the NH2 hydrogens with respect to Se-H bond. The N inversion barriers in selenamide are 1.65, 2.47, 1.93 kcal/mol and the Se-N rotational barriers are 6.58, 6.56 and 6.12 kcal/mol respectively at HF/6-31+G*, MP2/6-31+G* and B3LYP/6-31+G* levels respectively. The nNΣ *Se-H negative hyperconjugation is found to be responsible for the higher rotational barriers.  相似文献   

16.
P. Senthil Kumar 《Tetrahedron》2005,61(23):5633-5639
The potential energy surface of sulfoximines has been searched using ab initio MO and Density Functional Calculations. The electronic structures of the isomers of sulfoximine have been studied using HF/6-31+G*, MP2(full)/6-31+G* and B3LYP/6-31+G* levels. Final energies of these molecules have been calculated at the high accuracy G2 and CBS-Q levels. Though a formal SN double bond is generally considered between sulfur and nitrogen in these systems, theoretical studies do not show any π interaction between them. S-N rotational barriers, bond dissociation energies, atomic charge analysis, and NBO analysis all indicate only a single bond across S-N with a very strong ionic interaction.  相似文献   

17.
Ab initio calculations have been carried out to study the structures and relative stabilities of the planar eight‐membered ring B4N4H4 and its isoelectronic species C8H4 at the HF/6‐31G*, MP2/6‐31G*, MP2/6‐311G**, and MP4SDQ/6‐31G* levels. The analyses of Milliken population, vibration frequencies, π‐molecular orbital components, and orbital energy levels were used to evaluate the relative stabilities of these two similar systems. The homodesmotic reactions were also taken to be a useful index of relative stability for X4Y4H4 (XY=CC, BN) and gave the resonance energies with MP4SDQ/6‐31G* of C8H4 (?37.2 kcal/mol) < B4N4H4 (?29.2 kcal/mol). Furthermore, we calculated the thermodynamic functions of these reactions to discuss the influence of temperature. It is concluded that B4N4H4 may exist in theory and could be a little more stable than C8H4. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 293–298, 2001  相似文献   

18.
Ab initio and density functional calculations have been performed on the different possible structures of selenourea(su), urea(u) and thiourea(tu) to understand the extent of delocalisation in selenourea in comparison to urea and thiourea. Selenourea(su-1) withC 2 symmetry has the minima on the potential energy surface at MP2(fu)/6-31+G* level. The C-N rotational barrier in selenourea is 8.69 kcal/mol, which is 0.29 and 0.11 kcal/mol more than that of urea and thiourea respectively at MP2(fu)/6-31+G* level. N-inversion barrier is 0.55 kcal/mol at MP2(fu)6-31+G* level. NBO analysis has been carried out to understand the nature of different interactions responsible for the electron delocalisation.  相似文献   

19.
The optimized geometries and energies of fluorine-substituted ethylene dications C2HnF4-n 2+ (n = 0–4) have been investigated by means of ab initio methods. At the MP3/6-31G**//6-31G* + zero-point energy level of theory, the results predict that C2F42+ and C2HF32+ are planar, while C2H42+, C2H3F2+ and 1,1—C2H2F22+ prefer a perpendicular geometry. For 1,2—C2H2F22+ an energy difference of only 0.3 kcal/mol is found between the (trans) planar and perpendicular structure. The stabilizations attributed to hyperconjugation, fluorine lone-pair donation, and (C? F) double-bond conjugation are discussed. A comparison is made for the C? C and C? F stretching frequencies determined at 6-31G*//6-31G* between the neutral and dicationic species. The theoretically determined ionization energies for the vertical process N+ → N2+ at the MP3/6-31G*//3-21G level are compared with experimental Qmin values.  相似文献   

20.
The structures and relative stabilities of furoxan and some of its isomers, e.g., the 1,2-dinitrosoethylenes, have been determined by means of ab initio Hartee–Fock and Møller–Plesset calculations. Geometries were optimized at the HF/3-21G, HF/6-31G* and MP2/6-31G* levels, and subsequently used for computing MP2/6-31G*, MP3/6-31G*, and MP4/6-31G* energies. The results are markedly affected by the inclusion of electronic correlation, which renders three of the isomers unstable. It also emphasizes the importance of a zwitterionic contribution to the structure of furoxan, which promotes ring-opening through a cis 1,2-dinitrosoethylene intermediate/transition state that has an MP4/6-31G*//MP2/6-31G* energy that is 31.6 kcal/mol above furoxan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号