首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 8 with furfural, 3-methyl-2-thiophene-carbaldehyde, 2-pyrrolecarbaldehyde, 4-pyridinecarbaldehyde and pyridoxal hydrochloride gave 6-chloro-2-[2-(2-furylmethylene)-1-methylhydrazino]quinoxaline 4-oxide 5a , 6-chloro-2-[1-methyl-2-(3-methyl-2-thienyl-methylene)hydrazino]quinoxaline 4-oxide 5b , 6-chloro-2-[1-methyl-2-(2-pyrrolylmethylene)hydrazino]quinoxa-line 4-oxide 5c , 6-chloro-2-[1-methyl-2-(4-pyridylmethylene)hydrazino]quinoxaline 4-oxide 5d and 6-chloro-2-[2-(3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridylmethylene)-1-methylhydrazino]quinoxalme 4-oxide 5e , respectively. The reaction of compound 5a or 5b with 2-chloroacrylonitrile afforded 8-chloro-3-(2-furyl)-4-hydroxy-1-methyl-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6a or 8-chloro-4-hydroxy-1-methyl-3-(3-methyl-2-thienyl)-2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxaline-5-carbonitrile 6b , respectively, while the reaction of compound 5e with 2-chloroacrylonitrile furnished 11-chloro-7,13-dihydro-4-hydroxy-methyl-5,14-methano-1,7-dimethyl-16-oxopyrido[3′,4′:9,8][1,5,6]oxadiazonino[3,4-b]quinoxaline 7.  相似文献   

2.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 1 or 6-chloro-2-(1-methylhydrazino)-quinoxaline 5 with phenyl isothiocyanate under reflux in N,N-dimethylformamide gave 7-chloro-3-methyl-1,2,4-triazolo[4,3-a]quinoxalin-3-ium-1-thioate 4 , which was also obtained by refluxing of 6-chloro-2-[1-methyl-2-(N-phenylthiocarbamoyl)hydrazino]quinoxaline 4-oxide 2b or 6-chloro-2-[1-methyl-2-(N-phenylthiocarbamoyl)hydrazino]quinoxaline 6 in N,N-dimethylformamide.  相似文献   

3.
The reaction of 2,6-dichloroquinoxaline 4-oxide 4 with methylhydrazine gave 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 5, whose reaction with dimethyl acetylenedicarboxylate or 2-chloroacrylonitrile resulted in the 1,3-dipolar cycloaddition reaction to afford 7-chloro-3,4-bismethoxycarbonyl-1-methyl-1,2-dihydropyridazino[3,4-b]quinoxaline 6 or 6-chloro-3-hydroxymethylene-1-methyl-2,3-dihydro-1H-pyrazolo[3,4-b] quinoxaline hydrochloride 7, respectively.  相似文献   

4.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 4a with methyl or phenyl isothiocyanate gave 6-chloro-2-[1-methyl-2-(N-methylthiocarbamoyl)hydrazino]quinoxaline 4-oxide 7a or 6-chloro-2-[1-methyl-2-(N-phenylthiocarbamoyl)hydrazino]quinoxaline 4-oxide 7b , respectively, whose reaction with dimethyl acetylenedicarboxylate afforded 6-chloro-2-[N-methyl-N-(5-methoxycarbonylmethylene-3-methyl-4-oxo-2-thioxoimidazolidin-1-yl)]aminoquinoxaline 4-oxide 8a or 6-chloro-2-[N-methyl-N-(5-methoxycarbonylmethylene-4-oxo-3-phenyl-2-thioxoimidazolidin-1-yl)]aminoquinoxaline 4-oxide 8b , respectively.  相似文献   

5.
The pyridazino[3,4-b]quinoxalines 6a,b and pyrazolo[3,4-b]quinoxaline hydrochloride 9 were synthesized by the 1,3-dipolar cycloaddition reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 5 with dimethyl or diethyl acetylenedicarboxylate and 2-chloroacrylonitrile, respectively. The reaction mechanisms were postulated for the formation of 6a,b and 9 .  相似文献   

6.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 8 with acetic anhydride resulted in the intramolecular cyclization to give 8-chloro-2,4-dimethyl-4H-1,3,4-oxadiazino[5,6-b]quinoxaline 7a , while the reaction of compound 8 with acetic anhydride/pyridine or acetic anhydride/acetic acid afforded 3-(2,2-diacetyl-1-memymydrazmo)-7-chloro-2-oxo-1,2-dihydroquinoxaline 9 , effecting no intramolecular cyclization. The reaction of 2-(2-acetyl-1-methylhydrazino)-6-chloroquinoxaline 4-oxide 10a or 6-chloro-2-(1-methyl-2-trifluoroacetylhydrazino)quinoxaline 4-oxide 10b with phosphoryl chloride provided compound 7a or 8-chloro-4-memyl-2-trifluoromethyl-4H-1,3,4-oxadiazino[5,6-b]quinoxaline 7b , respectively. The reaction of compound 7b with phosphorus pentasulfide gave 7-chloro-3-(1-methyl-2-trifluoroacetylhydrazino)-2-thioxo-1,2-dihydroquinoxaline 11 , whose dehydration with sulfuric acid in acetic acid afforded 8-chloro-4-methyl-2-trifluoromemyl-4H-1,3,4-thiadiazino[5,6-b]quinoxaline 12 .  相似文献   

7.
Summary. The 1,3-dipolar intermediates generated by addition of isoquinoline, to dialkyl acetylenedicaboxylates are trapped by N-alkylisatins to produce dialkyl 1,2-dihydro-2-oxo-1-alkylspiro[3H-indol-3,2′-[2H,11bH][1,3]oxazino[2,3-a]isoquinoline]-3′,4′-dicarboxylates in excellent yields. The reaction of isoquinoline, quinoline, or pyridine with dimethyl acetylenedicarboxylate in the presence of ninhydrin led to dimethyl 1,2-dihydro-1,3-dioxospiro[3H-indene-3,2′-[2H,11bH][1,3]oxazino[2,3-a]isoquinoline]-3′,4′-dicarboxylate, dimethyl 1,2-dihydro-1,3-dioxospiro[3H-indene-3,3′[3H,4aH][1,3]oxazino[3,2-a]quinoline]-1,2-dicarboxylate, or dimethyl 1,2-dihydro-1,3-dioxospiro[3H-indene-3,2′-[2H,9aH]pyrido[2,1-b][1,3]oxazino]-3,4-dicarboxylate.  相似文献   

8.
The reaction of 6-chloro-2-hydrazinoquinoxaline 4-oxide 6 with ethyl 2-(ethoxymethylene)-2-cyanoacetate or (1-ethoxyethylidene)malononitrile gave 2-(5-amino-4-ethoxycarbonylpyrazol-1-yl)-6-chloroquinoxaline 4-oxide 7a or 2-(5-amino-4-cyano-3-methylpyrazol-1-yl)-6-chloroquinoxaline 4-oxide 7b , respectively. The reaction of compound 7a or 7b with dimethyl acetylenedicarboxylate resulted in the 1,3-dipolar cycloaddition reaction and then ring transformation to afford 4-(5-amino-4-ethoxycarbonylpyrazol-1-yl)-8-chloro-1,2,3-trismethoxycarbonylpyrrolo[1,2-α]quinoxaline 8a or 4-(5-amino-4-cyano-3-methylpyrazol-1-yl)-8-chloro-1,2,3-trismethoxycarbonylpyrrolo[1,2-α]quinoxaline 8b , respectively.  相似文献   

9.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 1 with ethyl 2-ethoxymethylene-2-cyano-acetate or ethoxymethylenemalononitrile gave 6-chloro-2-[2-(2-cyano-2-ethoxycarbonylvinyl)-1-methylhy-drazino]quinoxaline 4-oxide 3a or 6-chloro-2-[2-(2,2-dicyanovinyl)-1-methylhydrazino]quinoxaline 3b , respectively. The reaction of 3a with a base afforded 7-chloro-1-methyl-1,5-dihydropyridazino[3,4-b]quinoxaline 4 . From the NOE spectral data, the 1-methyldihydropyridazino[3,4-b]quinoxalines 2a, 2b and 4 were found to exist as the 1,5-dihydro form in a dimethyl sulfoxide or trifluoroacetic acid/dimethyl sulfoxide solution.  相似文献   

10.
The reaction of the 2-substituted 6-chloroquinoxaline 4-oxides 1a or 1b with 2-fold molar amount of methyl propiolate resulted in the 1,3-dipolar cycloaddition reaction to give 8-chloro-1,3-bismethoxycarbonyl-4-(piperidin-1-yl)pyrrolo[1,2-a]quinoxaline 4a or 8-chloro-1,3-bismethoxycarbonyl-4-(morpholin-4-yl)pyrrolo-[1,2-a]quinoxaline 4b , respectively. Compound 4a or 4b was transformed into 8-chloro-3-methoxycarbonyl-4-(piperidin-1-yl)pyrrolo[1,2-a]quinoxaline 5a or 8-chloro-3-methoxycarbonyl-4-(morpholin-4-yl)pyrrolo[1,2-a]-quinoxaline 5b , respectively. The structure of 4a,b was confirmed by the NOE measurement among the C1 -H , C 2-H and C 9-H proton signals of 5a,b . An additional reaction mechanism was proposed for the ring transformation of isoxazolo[2,3-a]quinoxalines into pyrrolo[1,2-a]quinoxalines.  相似文献   

11.
1,3,4,6,8-Pentamethylazulene ( 9 ), when heated at 100° in supercritical CO2 at 150 bar in the presence of 4 equiv. of dimethyl acetylenedicarboxylate (ADM), led to the formation of 16% of a 1:1 mixture of dimethyl 3,5,6,8,10-pentamethylheptalene-1,2-dicarboxylate 12a ) and its double-bond-shifted isomer 12b as well as 4% of the corresponding azulene-1,2-dicarboxylate 13 (Scheme 4). The formation of the [1 + 2] adduct 11 (cf. Scheme 2) was not observed. Similarly, benz[a]azulene ( 25 ) yielded in supercritical CO2 (150°/170 bar) in the presence of 4 equiv. of ADM dimethyl benzo[d]heptalene-6,7-dicarboxylate ( 29 ; 30%) and dimethyl benzo[a]cyclopent[cd]azulene-1,2-dicarboxylate ( 28 ; 22%; Scheme 5). The reaction of 5,9-diphenylbenz[a]azulene ( 26 ) and ADM in supercritical CO2 (100°/150 bar) gave the corresponding benzo[d]heptalene-6,7-dicarboxylate 31 (22%) and dimethyl 5,9-diphenyl-4b,10-etheno-10H-benz[a]azulene-11,12-dicarboxylate( 30 ; 25%; Scheme 5).  相似文献   

12.
Isatoic anhydride ( 1a ) and 5-chloroisatoic anhydride ( 1b ) were treated with 2-(1-methylhydrazino)ethanol ( 2 ) to produce 2-aminobenzoic acid 2-(2-hydroxyethyl)-2-methylhydrazide ( 3a ) and its 5-chloro analog 3b , respectively. Treatment of 3a and 3b with carbon disulfide gave, respectively, 2,3-dihydro-3-[(2-hydroxyethyl)methylamino]-2-thioxo-4-(1H)quinazolinone ( 4a ) and its 6-chloro analog 4b . Compounds 4a and 4b afforded 5,6-dihydro-5-methyl-2-thioxo-4H,8H-[1,3,5,6]oxathiadiazocino[4,5-b]quinazolin-8-one ( 5a ) and its 10-chloro analog 5b , respectively, upon treatment with thiophosgene. Compound 5a could be produced directly from 3a and thiophosgene. Treatment of 4a and 4b with trifluoroacetic anhydride followed by potassium carbonate gave 3,4-dihydro-4-methyl-2H,6H-[1,3,4]thiadiazino[2,3-b]quinazolin-6-one ( 7a ) and its 8-chloro analog 7b , respectively. Treatment of 4a with thionyl chloride also gave 7a , but 4b and thionyl chloride afforded a mixture of 7b and 8-chloro-3,4-dihydro-4-methyl-2H,6H-[1,3,4]oxadiazino[2,3-b]quinazolin-6-one ( 10 ). The dimethyl analogs of 4a and 4b ( 13a and 13b ) upon treatment with thiophosgene afforded 3,4-dihydro-2,2,4-trimethyl-2H,6H-[1,3,4]oxadiazino[2,3-b]quinazolin-6-one ( 14a ) and its 8-chloro analog 14b , respectively.  相似文献   

13.
The isoxazolo[2,3-a]quinoxalines 11a,b and pyrrolo[1,2-a]quinoxalines 12a,b were selectively synthesized from the 2-substituted 6-chloroquinoxaline 4-oxides 10a,b . The pyrrolo[1,2-a]quinoxalines 12a,b were clarified to be produced by the ring transformation of the isoxazolo[2,3-a]quinoxalines 11a,b . The pyrrolo[1,2-a]quinoxalines 14a,b were obtained from both 2,6-dichloroquinoxaline 4-oxide 9 and compounds 12a,b .  相似文献   

14.
6,10-Diphenylbenz[a]azulene ( 3 ) was reacted with dimethyl acetylenedicarboxylate (ADM) in the presence of 2 mol-% of [RuH2(PPh3)4] in MeCN at 100° to yield a 7:1 mixture of dimethyl 2,6-diphenyl-9,10-benzotricyclo[6.2.2.01,7]dodeca-2,4,6,9,11-pentaene-11,12-dicarboxylate ( 4 ) and dimethyl 8,12-diphenylbenzo[d]heptalene-6,7-dicarboxylate ( 5 ; Scheme 2). The tricycle 4 , when heated in DMF at 150° for 1 h led to the formation of 81.5% of the heptalene-6,7-dicarboxylate 5 and 15% of the starting azulene 3 . No rearrangement of tricycle 4 was observed, when it was heated at temperatures up to 180° in pseudocumene. The heptalene-6,7-dicarboxylate 5 was easily separated into its antipodes (PM)-and (MP)- 5 on a Chiracel column (cf. Fig. 2). On heating at 150° for 1 h, (MP)- 5 showed no racemization at all. The Ru-catalyzed reaction of benz[a]azulene ( 6 ) with ADM led to the formation of dimethyl 9,10-benzotricyclo[6.2.2.01,7]dodeca-2,4,6,9,11-pentaene-11,12-dicarboxylate ( 7 ; Scheme 3). However, the formation of the corresponding heptalene-6,7-dicarboxylate could not be observed.  相似文献   

15.
The reaction of 7-chloro-4-ethoxycarbonylmethylene-4,5-dihydro-1,2,4-triazolo[4,3-a]quinoxaline 6 with 4-ethoxycarbonyl-1-methyl-1H-pyrazole-5-diazonium chloride or 4-cyano-1,3-dimethyl-1H-pyrazole-5-diazonium chloride gave 7-chloro-4-[α-(4-ethoxycarbonyl-1-methyl-1H-pyrazol-5-ylhydrazono)-ethoxycarbonylmethyl]-1,2,4-triazolo[4,3-a]quinoxaline 8a or 7-chloro-4-[α-(4-cyano-1,3-dimethyl-1H-pyrazol-5-ylhydrazono)ethoxycarbonylmethyl]-1,2,4-triazolo[4,3-a]quinoxaline 8b , respectively, while the reaction of 7-chloro-4-ethoxycarbonylmethylene-4,5-dihydrotetrazolo[1,5-a]quinoxaline 7 with 4-ethoxycarbonyl-1-methyl-1H-pyrazole-5-diazonium chloride or 4-cyano-1,3-dimethyl-1H-pyrazole-5-diazomum chloride provided 7-chloro-4-[α-(4-ethoxycarbonyl-1-methyl-1H-pyrazol-5-ylhydrazono)ethoxycarbonylmethyl]tetrazolo[1,5-a]quinoxaline 9a or 7-chloro-4-[α-(4-cyano-1,3-dimethyl-1H-pyrazol-5-ylhydrazono)ethoxycarbonylmethyl]tetrazolo[1,5-a]quinoxaline 9b , respectively. Compounds 8a,b and 9a,b showed the tautomeric equilibria between the hydrazone imine C and diazenyl enamine D forms in dimethyl sulfoxide and/or trifluoroacetic acid, and the effects of solvent and temperature on the tautomer ratios of C to D were studied by the nmr measurements in a series of mixed trifluoroacetic acid/dimethyl sulfoxide media (compounds 8a,b and 9a,b ) and at various temperatures (compounds 8a,b ).  相似文献   

16.
3-Aryl-1,2,4-triazole-5-thiones react with dimethyl acetylenedicarboxylate and methyl 3-phenyl-propynoate to afford the corresponding 5-substituted 2-aryl-7H-[1,2,4]triazolo[3,2-b][1,3]thiazin-7-ones. Treatment of 2-aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-ones with alkalies leads to formation of 3-(benzimidazol-2-ylsulfanyl)-3-arylpropionic acids, their reaction with methyl p-toluenesulfonate yields 1-(3-methyl-2-thioxo-2,3-dihydro-1N-benzimidazol-1-yl)-3-phenyl-2-propen-1-one, and oxidation with hydrogen peroxide gives benzimidazole-2-sulfonic acid and 3-aryl-2-propenoic acids.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 1, 2005, pp. 109–114.Original Russian Text Copyright © 2005 by Britsun, Esipenko, Chernega, Lozinskii.  相似文献   

17.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 5 with a 2-fold molar amount of ethyl chloroglyoxalate gave ethyl 8-chloro-4-methyl-4H-1,3,4-oxadiazino[5,6-b]quinoxaline-2-carboxylate 6 , whose reaction with hydrazine hydrate afforded the C2-hydrazinocarbonyl derivative 7 . The reaction of compound 7 with nitrous acid provided the C2-acylazide derivative 8 , which was converted into the C2-amino 9 , C2-carbamate 11a-c, 12a,b , and C2-ureido 13a-c, 14 derivatives. The mass spectral fragmentation patterns were examined for compounds 10–14 , wherein the molecular ion peak did not appear in the mass spectra of compounds 10c, 11a-c, 12a,b, 13c , and 14.  相似文献   

18.
The reaction of 6-chloro-2-hydrazinoquinoxaline 4-oxide 5 with triethyl orthoformate gave 7-chloro-1,2,4-triazolo[4,3-a]quinoxaline 5-oxide 6. The reaction of compound 6 with phenyl isocyanate afforded 7-chloro-4-phenylamino-1,2,4-triazolo[4,3-a]quinoxaline 7 , while the reaction of compound 6 with phenyl isothiocyanate resulted in deoxygenation to provide 7-chloro-1,2,4-triazolo[4,3-a]quinoxaline 8. However, the reaction of compound 6 with allyl isothiocyanate effected the 1,3-dipolar cycloaddition reaction, but not deoxygenation, to furnish 9-chloro-4,5-dihydroisoxazolo[2,3-a][1,2,4]triazolo[3,4-c]quinoxalin-5-ylmethylisothiocyanate 9. Moreover, the reduction of compound 9 with iron/acetic acid resulted in ring transformation to give 11 -chloro-7-hydroxy-4-thioxo-4,5,6,7,8,9-hexahydro-1,2,4-triazolo[4,3,2- o,p][1,3]diazocino[4,5-b]quinoxaline 10 , whose acetylation afforded 5-acetyl-11-chloro-7-hydroxy-4-thioxo-4,5,6,7,8,9-hexahydro-1,2,4-triazolo[4,3,2-o,p][1,3]diazocino[4,5-b]quinoxaline 11.  相似文献   

19.
Benzaldehyde phenylhydrazone with dimethyl acetylenedicarboxylate gives dimethyl 1,3-diphenylpyrazoline-4,5-dicarboxylate, dimethyl 1,3-diphenylpyrazole-4,5-dicarboxylate and trimethyl 1-phenylpyrazole-3,4,5-tricarboxylate; p-chlorobenzaldehyde phenylhydrazone gives trimethyl 1-phenyl-3,4,5-tricarboxylate and 1,2-(bis-phenylazo)-1,2-di-p-chlorophenylethane. Under similar conditions, p-tolualdehyde phenylhydrazone gives only trimethyl 1-phenylpyrazole-3,4,5- tricarboxylate. Acetophenone phenylhydrazone with dimethyl acetylenedicarboxylate gives dimethyl 1,3-diphenylpyrazole-4,5-dicarboxylate. Benzophenone phenylhydrazone, on the other hand, gives a mixture of dimethyl 1,3-diphenylpyrazoline-4,5-dicarboxylate and dimethyl 1,3-diphenylpyrazole-4,5- dicarboxylate. Benzyl methyl ketone and dimethyl acetylenedicarboxylate gives an enamine maleate, which is the Michael addition product.  相似文献   

20.
The reaction of 6-chloro-2-(l-methylhydrazino)quinoxaline 1-oxide 3 with acetylenedicarboxylates gave the 8-chloro-1-memyl-1,5-dihydropyridazino[3,4-b]quinoxaline-3,4-dicarboxylates 4a,b and 2-(pyrazol-4-yl)quinoxaline 1-oxides 5a,b . The formation of compounds 4a,b would follow the 1,3-dipolar cycloaddition reaction, subsequent 1,2-hydrazino migration, and then dehydrative cyclization, while the production of compounds 5a,b would proceed via the addition of the hydrazino group to acetylene-dicarboxylate leading to the construction of a pyrazole ring, followed by rearrangement of the pyrazole ring. Compounds 5a,b were deoxidized with phosphoryl chloride/N,N-dimethylformamide to change into the 4-(quinoxalin-2-yl)pyrazole-3-carboxylates 8a,b .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号