首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Injection‐molded blends composed of two liquid‐crystalline polymers (LCPs) based on 60/40 p‐hydroxybenzoic acid/ethylene terephthalate (R3) and 73/27 p‐hydroxybenzoic acid/2,6‐hydroxynaphthoic acid (VA) copolymers, respectively, were obtained across the whole composition range. The two amorphous phases of the blends contained only slight amounts of the minority component, and the occurrence of some chemical reaction, mainly at high VA contents, was detected by Fourier transform infrared. Synergisms in the modulus of elasticity and in the tensile strength were seen in most of the blend compositions. The largest synergism was in the 50/50 R3/VA blend, which showed a modulus of elasticity 26% higher than that of either of the two components and a 17% positive deviation in the tensile strength with respect to the rule of mixtures. The different orientation of the LCPs in the blends explains the differences in the mechanical behavior. However, contrary to previous works on LCP blends and despite the almost complete immiscibility, the observed negative volume of mixing appears to be the main parameter that determines the synergistic mechanical behavior. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1022–1032, 2003  相似文献   

2.
Liquid crystalline polymer/polyamide 66 (LCP/PA66) and LCP/poly(butyl terephthalate) (LCP/PBT) blends were compounded using a Brabender Plasticorder equipped with a mixing chamber. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30 mol% of p-amino benzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The Flory-Huggins interaction parameters (χ12) of the LCP/ PA66 and LCP/PBT blends are estimated by melting point depression from DSC measurement. The results indicate that c12 values all are negative for LCP/PA66 and LCP/PBT blends, and when the LCP content in these blends is more than 10 mass%, the absolute value of χ12 decreases. Thereby, we can conclude that LCP/PA66 and LCP/PBT blends are fully miscible in the molten state, the molecular interaction between the LCP and PA66 is stronger than that between LCP and PBT. As the LCP content in LCP/PA66 and LCP/PBT blends is more than 10 mass%, the molecular interaction between LCP and matrix polymer decreases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Liquid crystalline polymer–poly(butylene terephthalate) (LCP/PBT) blends were prepared by melt mixing. The LCP employed was a thermotropic copolyesteramide based on 30 mol % of p‐amino benzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The thermal, dynamic mechanical and rheological properties, morphology, and crystal structure of LCP/PBT blends were studied. The results showed that the semiflexible ABA30/PET LCP is miscible in the melt state with PBT, and they are partial miscible in the solid state. Differential scanning calorimetric measurements showed that the introduction of the semiflexible LCP into LCP/PBT blends retards the crystallization rate of PBT. However, the LCP dispersed phase acted as the sites for the nucleation of spherulites and enhance the degree of crystallinity of PBT. Hot‐stage optical microscopy examination revealed that the LCP microfibers with random orientation are dispersed in the PBT matrix of compression molded LCP/PBT blends. Under the application of a shearing force, the LCP domains in the PBT matrix tended to deform into microfibers, and to orient themselves along the flow direction. The formation of microfibers resulted in an increase of the storage modulus. The torque measurements indicated that the melting viscosity of the LCP/PBT blends is much lower than that of the pure PBT. Finally, the wide‐angle X‐ray diffraction patterns indicated that PBT shows no structural change with the incorporation of LCP, but the apparent crystal sizes of several diffraction planes change significantly. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 403–414, 2000  相似文献   

4.
A calorimetric study of blends of poly(ethylene terephthalate-co-p-oxybenzoate), PET/PHB, with poly(butylene terephthalate), PBT has been carried out in the form of as-spun and drawn fibres. DSC melting and crystallization results show that PBT is compatible with LCP and the crystallization of PBT decreases by the addition of LCP in the matrix. The crystallization behaviour of blend fibres is investigated as a function of temperature of crystallization. A detailed analysis of the crystallization course has been made utilizing the Avrami expression. The isothermal calorimetric measurements provide evidence of decrease of rate of crystallization of PBT on addition of the liquid crystalline component up to about 50% by weight. The values of the Avrami exponents change in the temperature range from 200° to 215°C. Dimensionality changes in crystallization could be due to LCP mesophase-transition.  相似文献   

5.
Blends were synthesized via the melt blending of a thermotropic liquid‐crystalline polymer (TLCP) and a poly(butylene terephthalate) (PBT) hybrid containing 2 wt % organoclay. A TLCP was also synthesized with side groups based on a nematic liquid‐crystalline phase. The blends of TLCPs with PBT hybrids were melt‐spun with different concentrations of the liquid‐crystalline polymer and different draw ratios (DRs) to produce monofilaments. Regardless of the TLCP concentration in the hybrids, transmission electron microscopy photographs proved that the clay layers of the organoclay were intercalated and partially exfoliated in the PBT matrix. At DR = 1, the maximum enhancement in the ultimate tensile strength was observed for blends containing 8% TLCP, and the tensile strength decreased with further increases in the TLCP concentration. The initial modulus monotonically increased with increasing TLCP concentration. When DR increased from 1 to 44, the increased stretching caused the tensile property to decrease significantly, debonding to occur, and voids to form. These trends with increasing DR were observed in all the systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3667–3676, 2004  相似文献   

6.
With the help of differential scanning calorimetry, cone-plate and capillary rheometry andscanning electron microscopy, a research has been conducted on rheological behavior,crystallization and morphology of poly (butylene terephthalate) (PBT) blends containing athermotropic LCP. The blend has zero entrance pressure loss, although the LCP has rather largeone. The viscosity curve of the blend lies between those of the LCP and PBT. The crystallizationof PBT is not affected by the presence of the LCP together with no indication oftransesterification between the two ingredients. LCP spheres and ellipsoids with the size of 0. 5--1. 5 μm disperse in PBT matrix uniformly, which is related to the viscosity ratio of the twocomponents.  相似文献   

7.
Gas transport properties are reported for a series of compression-molded films prepared from copolyesters of hydroxybenzoic acid (HBA) and 2,6 hydroxynaphthoic acid (HNA) having 30/70, 58/42, 73/27, 75/25, and 80/20 mol % HBA/HNA. The mesomorphic and crystalline morphology of the materials was characterized using dynamic mechanical thermal analysis (DMTA), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction As evidenced by DMTA, the phenyl and naphthyl moieties of the HBA/HNA materials exhibit a significant degree of segmental mobility below the glass transition temperature. The nonlinear nature of the naphthyl unit leads to a more hindered rotation about the chain axis. Permeability measurements were made for He, H2, O2, N2, Ar, and CO2 at 35°C and the diffusivities were computed from time-lag data. As previously observed in these materials, the films exhibited excellent barrier properties resulting largely from very low gas solubility coefficients. The liquid-crystalline copolyester: (LCP) materials with the highest HNA content exhibit the best barrier properties. It appears that the more hindered motions of the naphthyl unit restrict penetrant mobility. The reduction in permeability with increased naphthyl unit content is accompanied by a very dramatic increase in selectivity between gas pairs. Fractional free volume analysis was used to correlate the transport properties of the LCP materials and other conventional polymers. A “two-phase” modification of the free volume correlation suggests that transport may likely occur in a small volume fraction of a less dense boundary phase.  相似文献   

8.
In this paper we focus on miscible blends of two engineering polymers: poly(butylene terephthalate) (PBT) and a polyarylate (PAr). The issue of transesterification in these blends will be addressed, followed by a discussion of the crystallization kinetics of PBT, poly(ethylene terephthalate) and several PBT/PAr blends. The ability to estimate polymer–polymer interaction parameters in blends from melting point depression will also be discussed. The amorphous phase behavior of the PBT/PAr blends has been explored primarily using dielectric spectroscopy. For blends in which PBT has crystallized, we observe two relaxations associated with Tg-like motion, and this behavior is interpreted in light of our recent work on order–disorder interphases in crystalline blends.  相似文献   

9.
Gas transport properties are reported for two series of films prepared from copolyesters of 73 mol % hydroxybenzoic acid (HBA) and 27 mol % 2,6-hydroxynaphthoic acid (HNA) which systematically vary the degree of orientation and annealing time. Scanning electron microscopic (SEM) photomicrographs of the liquid-crystalline polymer (LCP) films showed evidence of a skin-core structure and polydomain texture. The degree of orientation in the films was quantified by analyzing the azimuthal intensity of the x-ray reflection associated with the lateral packing of the nematic mesophase. Using heat of fusion data from differential scanning calorimetry (DSC), the films were found to contain low levels of crystallinity estimated to be in the range of 5 to 15 wt %, which increased with annealing time. Permeability measurements were made for He, H2, O2, N2, Ar, and CO2 at 35°C and the diffusivities were computed from time-lag data. The films exhibited excellent barrier properties resulting largely from very low gas solubility coefficients. A moderate reduction in permeability was observed with increased orientation, which could be attributed directly to a decrease in the effective diffusivity. The effect of increased crystallinity from annealing on the permeability coefficients was smaller than would be expected for similar changes in the crystallinity of conventional polymers. Analysis using a simple two-phase model suggests that a mechanism dominated by transport in a small volume fraction of boundary regions possibly could account for the bulk transport properties of these materials.  相似文献   

10.
Nylon‐6/glass‐fiber (GF)/liquid‐crystalline‐polymer (LCP) ternary blends with different viscosity ratios were prepared with three kinds of nylon‐6 with different viscosities as matrices. The rheological behaviors of these blends were characterized with capillary rheometry. The morphology was observed with scanning electron microscopy and polarizing optical microscopy. This study showed that although LCP did not fibrillate in binary nylon‐6/LCP blends, LCP fibrillated to a large aspect ratio in some ternary blends after GF was added. The addition of 5 wt % LCP significantly reduced the melt viscosity of nylon‐6/GF blends to such an extent that some nylon‐6/GF/LCP blends had quite low viscosities, not only lower than those of neat resins and nylon‐6/GF blends but also lower than those of corresponding nylon‐6/LCP blends. The mutual influence of the morphology and rheological properties was examined. The great reduction of the melt viscosity was considered the result of LCP fibrillation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1619–1627, 2004  相似文献   

11.
New super‐tough poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) copolymer (PEO) blends containing 2 wt% poly(ethylene‐co‐glycidyl methacrylate) (EGMA) as a compatibilizer were obtained by extrusion and injection molding. The blends comprised of an amorphous PBT‐rich phase with some miscibilized EGMA, a pure PEO amorphous phase, and a crystalline PBT phase that was not influenced by the presence of either PEO or EGMA. The blends showed a fine particle size up to 20 wt% PEO content. Super‐tough blends were obtained with PEO contents equal to or higher than 10%. The maximum toughness was very high (above 710 J/m) and was attained with 20% PEO without chemical modification of the commercial components used. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of composition and shear rate on the rheology and morphology of blends of LC–3000, a thermotropic liquid crystalline polymer consisting of 60/40 of hydroxybenzoic acid and poly(ethylene terephthalate), with polypropylene were studied. It was found that the rheological properties depend in a complex manner on composition and applied shear. Both positive and negative deviations from the log-additivity rule were observed at low shear rates. Significant viscosity reduction was measured when the dispersed phase was a nematic TLCP. The accompanying microstructural transitions were characterized a posteriori, and it was found that the state of dispersion of the TLCP phase also influences the viscosity reduction phenomenon. A nematic, fibrillar TLCP phase shows a viscosity reduction of the order of fourfold with respect to the viscosity of the matrix. Another important finding was that the stability of these fibers would not be expected from work on other non-TLCP-containing immiscible blends. This suggests that the unique rheology of the TLCP minor phase is relevant to the formation of stable fibers. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
We present a study of isotropic and uniaxially oriented binary blend films comprising ≤1 wt % of the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) dispersed in both ultra‐high molecular weight (UHMW) and linear‐low‐density (LLD) polyethylene (PE). Polarized absorption, fluorescence and Raman spectroscopy, scanning electron microscopy, and X‐ray diffraction are used to characterize the samples before and after tensile deformation. Results show that blend films can be prepared with PFO chains adopting a combination of several distinct molecular conformations, namely glassy, crystalline, and the so‐called β‐phase, which directly influences the resulting optical properties. Both PFO concentration and drawing temperature strongly affect the alignment of PFO chains during the tensile drawing of the blend films. In both PE hosts, crystallization of PFO takes place during drawing; the resulting ordered chains show optimal optical anisotropy. Our results clarify the PFO microstructure in oriented blends with PE and the processing conditions required for achieving the maximal optical anisotropy. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 22–38  相似文献   

14.
The effects of molecular orientation on the crystallization and polymorphic behaviors of syndiotactic polystyrene (sPS) and sPS/poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) blends were studied with wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry. The oriented amorphous films of sPS and sPS/PPO blends were crystallized under constraint at crystallization temperatures ranging from 140 to 240°C. The degree of crystallinity was lower in the cold‐crystallized oriented film than in the cold‐crystallized isotropic film. This was in contrast to the case of the cold crystallization of other polymers such as poly(ethylene terephthalate) and isotactic polystyrene, in which the molecular orientation induced crystallization and accelerated crystal growth. It was thought that the oriented mesophase was obtained in drawn films of sPS and that the crystallization of sPS was suppressed in that phase. The WAXD measurements showed that the crystal phase was more ordered in an sPS/PPO blend than in pure sPS under the same annealing conditions. The crystalline order recovered in the cold‐crystallized sPS/PPO blends in comparison with the cold‐crystallized pure sPS because of the decrease in the mesophase content. The crystal forms depended on the crystallization temperature, blend composition, and molecular orientation. Only the α′‐crystalline form was obtained in cold‐crystallized pure sPS, regardless of molecular orientation, whereas α′, α″, and β′ forms coexisted in the cold‐crystallized sPS/PPO blends prepared at higher crystallization temperatures (200–240°C). The β′‐form content was much lower in the oriented sPS/PPO blend than in the isotropic blend sample at the same temperature and composition. It was concluded that the oriented mesophase suppressed the crystallization of the stable β′ form more than that of the metastable α′ and α″ forms during the cold crystallization of sPS/PPO blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1665–1675, 2003  相似文献   

15.
粘度比对刚性链高分子与柔性链高分子共混物微结构的影响何嘉松,卜文胜,张洪志,许向青(中国科学院化学研究所,北京,100080)(化工部北京化工研究院,北京,100013)关键词高分子共混物,热致液晶聚合物,聚合物加工影响柔性链高分子与柔性链高分子共混...  相似文献   

16.
Polycarbonate-triad-4–co-polybutylene terephthalate liquid crystalline blends were prepared and spun into fibers. It has been shown that fibrillation of the thermotropic liquid crystalline polymer (TLCP) takes place at the given spinning conditions, forming thus “in situ” reinforcement. Continuous fibrils are formed at concentrations between 2.5 and 5% LCP. A degree of miscibility between two phases was observed. The moduli of both as-spun and cold drawn fibers increase almost linearly with increasing concentration of TLCP. Tensile strength was found to decrease and elongation at break to increase with increasing TLCP content. The structure of the cold drawn fibers was not stable with time, causing a relaxation in the observed properties.  相似文献   

17.
Supertough poly(butylene terephthalate) (PBT)‐based blends were obtained by the melt blending of PBT with 0–30 wt % poly(ethylene‐co‐glycidyl methacrylate) (EGMA). The reaction between PBT and EGMA was detected by torque measurements. The particle size was almost constant with increasing EGMA content, and this indicated that compatibilization occurred. The minimum EGMA content for achieving supertoughness (i.e., an impact strength 16 times greater than that of PBT) was 20 wt %. The interparticle distance was the parameter controlling toughness in these PBT/EGMA blends. The dependence of the critical interparticle distance (τc) on the modulus of the dispersed phase appeared only at low τc values, and the primary dependence of τc on the ratio of the modulus of the matrix to the modulus of the rubbery dispersed phase was proposed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2236–2247, 2003  相似文献   

18.
Summary: The effect of poly(ε‐caprolactone) (PCL) molecular weight on the orientation of crystalline PCL in miscible poly(ε‐caprolactone)/poly(vinyl chloride) (PCL/PVC) blends, melt crystallized under strain, has been studied by a combination of wide angle X‐ray diffraction (WAXD) and small angle X‐ray scattering (SAXS) studies. An unusual crystal orientation with the b‐axis parallel to the stretching direction was observed in miscible PCL/PVC blends with PCL of high molecular weight (>21 000). SAXS showed the presence of nanosize confined PCL in the PCL/PVC blends, which could be preserved at temperatures higher than the Tm of PCL but lower than the Tg of PVC. A mechanism based on the confinement of PCL crystal growth was proposed, which can explain the formation of b‐axis orientation in PCL/PVC blends crystallized under strain.

SAXS pattern of stretched PCL/PVC blend after annealing at 90 °C for 5 min.  相似文献   


19.
Immiscible blends of thermotropic liquid crystalline polymers (TLCP) and a flexible polymer matrix show viscosity reductions and extensive fiber formation under certain flow conditions. Here we study these phenomena by directly examining the TLCP component's molecular orientation and the dispersed phase morphology. The rheology and morphology of blends of polybutylene terephthalate and a thermotropic copolyester (HX-8000 series, DuPont) at concentrations varying from 5 to 30 wt % of TLCP are characterized. It is found that the blends show viscosity reduction as well as stable fiber formation at shear rates dependent on the TLCP content. Wide-angle X-ray scattering is performed to measure the degree of molecular orientation of the TLCP phase. A deconvolution scheme isolates the scattering from the TLCP in the blends and a molecular model enables extracting an experimental orientation factor. It was found that a highly microfibrillated TLCP phase is coupled with an increase in the TLCP molecular orientation to values close to the pure TLCP at similar processing conditions. Further, the microfibrillated TLCP phase is found to be stable within the testing time. Current hypotheses about fiber formation in immiscible blends are tested against the experimental observations. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1769–1780, 1998  相似文献   

20.
The anisotropic mechanical properties of the thermoplastic elastomer (TPE) in situ reinforced with thermotropic liquid‐crystalline polymer (TLCP) fibers were investigated by uniaxial, strip‐biaxial, and equibiaxial tensile measurements. The in situ composite sheets were prepared from an immiscible blend of a TLCP, Rodrun LC3000, and a TPE, styrene‐(ethylene butylene)‐styrene (SEBS) triblock copolymer, by a melt extrusion process. The uniaxial orientation of the TLCP fibers in the TPE matrix generated during processing yielded a significant mechanical anisotropy in the composites. The biaxial tensile measurements clearly demonstrated the anisotropic mechanical properties of the composites: The modulus in the direction parallel to the machine direction (MD) was considerably higher than that in the transverse direction (TD), even at large deformations; in equibiaxial stretching, the yield strain in the MD was smaller than that in the TD; the composite containing 10 wt % of TLCP exhibited the highest mechanical anisotropy among the composites, with 0–30 wt % TLCP. The latter result was in accord with the SEM observation that the composite with 10 wt % of TLCP possessed the best fibrillar morphology and the highest degree of uniaxial orientation of the TLCP fibers. The yield strains in uni‐ and biaxial elongation for the composite containing 10 wt % of TLCP were almost the same as those for the neat styrene‐ethylene butylene‐styrene. The TLCP phase with good fibrillation did not appreciably alter the original yielding characteristics of the elastomer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 135–144, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号