首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twenty differently substituted 2,2′,2″,2? -[(2,2′-bipyridine-6,6′-diyl)bis(methylenenitrilo)]tetrakis(acetc acids) 75–94 were synthesized with the purpose of developing new markers to be used in bioaffinity assays based on the unique luminescence properties of EuIII and TbIII ions. The relative luminescence yields, excitation maxima, and emission decay constants were determined for the corresponding EuIII and TbIII chelates. The substituents at the bipyridine moiety had a significant effect on the luminescence properties: the best relative luminescence yields R were obtained for ligands with electron-donating substituents (e.g. Me, Ph), electron-withdrawing substituents (e.g. NO2, COOH) had a reverse effect. However, no clear correlation between the relative luminescence yields and the substituent parameters was found.  相似文献   

2.
Some Spectral properties and luminescence intensities of EuIII chelates with 4-(arylethynyl)pyridine-2,6-dicarboxylic acids 1 – 15 and 2,2′,2″,2′″-{[4-(arylethynyl)pyrridine-2,6-diyl]bis(methylenenitrilo)} tetrakis(acetic acids) 16 – 26 were measured both in H2O and EtOH solutions for the purpose of developing suitable labels to be used in time-resolved luminescence-based bioaffinity assays (Tables 1 and 2). The substitution at the Ar group has a significant effect upon the observed luminescence intensities, excitation wavelengths, and decay constants of the complexes, Moreover, the changes in the environment cause great variation in those properties of certain EuIII chelates.  相似文献   

3.
4,4?-Dichloro-1,1′ : 2′,1″ : 2″,1?-quaterphenyl ( 9 ), 4,4?-dichloro-1,1′ : 3′,1″ : 3″,1?-quaterphenyl ( 10 ), and 4,4?-dichloro-1,1′ : 4′,1″ : 4″,1?-quaterphenyl ( 11 ) were synthesized by Pd (0) catalyzed cross-coupling reaction of 4-chlorobenzeneboronic acid with 2,2′-, 3,3′-, and 4,4′-bis (trifluoromethanesulfonyloxy)biphenyl respectively. 4,4?-Dichloro-1,1′ : 2′,1″ : 2″,1?-quaterphenyl ( 9 ) and 4,4?-dichloro-1,1′ : 3′,1″ : 3″,1?-quaterphenyl ( 10 ) were oligomerized by Ni(0) catalyzed homocoupling reaction to yield white and soluble oligophenylenes. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Shigekazu Yamazaki 《合成通讯》2013,43(17):2210-2218
4,4′-Dicarboxy-2,2′-bipyridine was synthesized quantitatively by chromium(VI) oxide-mediated oxidation of 4,4′-dimethyl-2,2′-bipyridine or 4,4′-diethyl-2,2′-bipyridine with periodic acid as the terminal oxidant in sulfuric acid. 5,5′-Dicarboxy-2,2′-bipyridine and 6,6’-dicarboxy-2,2′-bipyridine were also synthesized by the method from the corresponding dimethyl bipyridines in excellent yields. 4,4′,4″-Tricarboxy-2,2′:6′,2″-terpyridine was obtained in 80% yield from 4,4′,4″-triethyl-2,2′:6′,2″-terpyridine, and 4,4′,4″,4′″-tetracarboxy-2,2′:6′,2″:6″,2′″-quaterpyridine was obtained in 72% yield from 4,4′,4″,4′″-tetraethyl-2,2′:6′,2″:6″,2′″-quaterpyridine by the same procedure.  相似文献   

5.
UV irradiation of hexacarbonyl-μ-η6:6-1,1′-bi(2,4,6-cycloheptatrien-1-yl)dichromium(O) (I) in THF in the presence of 1,3-butadiene (A), E-1,3-pentadiene (B) and EE-2,4-hexadiene (C) causes preferentially a twofold [4 + 6]-cycloaddition and formation of the hexacarbonyl-μ-2–5 : 8.9-η-2′–5′ : 8′,9′-η-11,11′-bi(bicyclo-[4.4.1]undeca-2,4,8-trien-11-yl)dichromium(O) complexes (IVA–IVC). Partial decomplexation after the first [4 + 6]-cycloaddition yields isomeric tricarbonyl-2–5:8,9-η- (IIA–IIC) and tricarbonyl-2′–7′-η-{11-(2′,4′,6′-cycloheptatrien-1′-yl)bicyclo[4.4.1]undeca-2,4,8-triene}chromium(O) complexes (IIIA–IIIC). With 2,3-dimethyl-1,3-butadiene (D) mainly dicarbonyl-2–6 : 2′–4′-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(8″,9″-dimethylbicyclo[4.4.1]undeca-2″, 4″,8″-trien-11″-yl)cyclohepta-3,5-dien-2-yl}chromium(O) (VD) besides small amounts of pentacarbonyl-μ-2–6 : 2′–4′-η-2″–7″-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(2″, 4″,6″-cycloheptatrien-1″-yl)cyclohepta-3,5-dien-2-yl}dichromium(O) (VID) and tricarbonyl-2′-7′-η-{11-(2′,4′,6′-cycloheptatrien-1′-yl)-8,9-dimethyl-bicyclo[4.4.1]undeca-2,4,8-triene}-chromium(O) (IIID) is obtained. VD adds readily CO to yield tricarbonyl-2–5 : 8,9-η-11,11′-bi(8,9-dimethyl-bicyclo[4.4.1]undeca-2,4,8-trien-11-yl)chromium(O) (VIID). Finally D adds to VID under formation of pentacarbonyl-μ-2–6 : 2′–4′-η-2″–5″ : 8″,9″-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(8″,9″-dimethyl-bicyclo[4.4.1]- undeca-2″,4″,8″-trien-11″-yl)cyclohepta-3,5-dien-2-yl}dichromium(O) (VIIID). From IVA–IVC the hydrocarbon ligands (IXA–IXC) can be liberated by P(OCH3)3 in good yields. The structures of the compounds IIA–IXC were determined by IR  相似文献   

6.
The synthesis and luminescence properties are reported for 20 different chelates composed of 2,2′:6′,2″-terpyridine as the energy-absorbing and donating group, EuIIIand TbIII as the emitting ions, methylenenitrilo(acetic acids) as the stabel chelate-forming moieties, and isothiocyanato or(4,6-dichloro-1,3,5-triazin-2-yl)amino groups as the activated moieties for coupling to biomolecules.  相似文献   

7.
Eight different 2,2′-bipyridine derivatives, i.e. 2, 5, 8, 10, 12, 13, 15 , and 19 (Schemes 1 and 2), were prepared to study the influence of the chelating groups on the luminescence properties of their EuIII and TbIII chelates. According to our luminescence results, 2,2′-(methylenenitrilo)bis(acetic acid) as well as (methylenenitrilo)bis-(methylphosphonic acid) in 6- and 6′-position of 2,2′-bipyridine is a suitable group when developing luminescent markers for bioaffinity assays based on time-resolved luminescence measurement.  相似文献   

8.
The new europium(III) chelate [2,2',2',2'-[[4'-(aminobiphenyl-4-yl)-2,2':6',2'-terpyridine- 6,6'-diyl]bis(methylenenitrilo)]tetrakis(acetato)] europium(III) (ATBTA-Eu3+) and its 4,6-dichloro-1,3,5-triazinyl and succinimidyl derivatives (DTBTA and NHS-ATBTA, respectively) were synthesized and characterized. Both labeling complexes DTBTA-Eu3+ and NHS-ATBTA-Eu3+ are luminescent. Especially DTBTA-Eu3+ is strongly luminescent, with a luminescence quantum yield of 9.1%, molar extinction coefficient of 3.1 x 10(4) cm(-1) M(-1) (335 nm), and luminescence lifetime of 1.02 ms. The excitation and emission maximum wavelengths of DTBTA-Eu3+ are 335 and 616 nm, respectively. The complex is very stable in aqueous buffers, with a conditional formation constant log K(DTBTA-Eu) of 25.0 at pH 8, and can be conjugated to DNA and proteins. The chelates are also highly resistant to thermal decomposition, photodegradation, and ozone oxidation. These properties prove that DTBTA-Eu3+ is suitable as a luminescence label in DNA assays.  相似文献   

9.
(1-Benzyl-1H-pyrrol-2-ylsulfanyl)acetic acid, 2- and 3-(1-benzyl-1H-pyrrol-2-ylsulfanyl)propionic acids, 1,1′-[1,4-phenylenebis(methylene)]bis[(1H-pyrrol-2-ylsulfanyl)acetic acid], and 1,1′-(hexane-1,6-diyl)bis-[(1H-pyrrol-2-ylsulfanyl)acetic acid] were synthesized for the first time by reactions of 1-benzyl-1H-pyrrole, 1,1′-[1,4-phenylenebis(methylene)]bis(1H-pyrrole), and 1,1′-(hexane-1,6-diyl)bis(1H-pyrrole) with thiourea, iodine, and the corresponding halogen-substituted alkanoic acids. 1-(4-Nitrophenyl)-1H-pyrrole failed to react with thiourea and iodine.  相似文献   

10.
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005  相似文献   

11.
A europium(III) complex as an efficient singlet oxygen luminescence probe   总被引:1,自引:0,他引:1  
A new europium(III) complex, [4'-(10-methyl-9-anthryl)-2,2':6',2"-terpyridine-6,6"-diyl]bis(methylenenitrilo) tetrakis(acetate)-Eu(3+), was designed and synthesized as a highly sensitive and selective time-gated luminescence probe for singlet oxygen ((1)O2). The new probe is highly water soluble with a large stability constant of approximately 10(21) and a wide pH available range (pH 3-10), and can specifically react with (1)O2 to form its endoperoxide (EP-MTTA-Eu(3+)) with a high reaction rate constant at 10(10) M(-1) s(-1), accompanied by the remarkable increases of luminescence quantum yield from 0.90% to 13.8% and lifetime from 0.80 to 1.29 ms, respectively. The wide applicability of the probe was demonstrated by detection of (1)O2 generated from a MoO(4)(2-)/H(2)O2 system, a photosensitization system of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP), and a horseradish peroxidase catalyzed aerobic oxidation system of indole-3-acetic acid (IAA). In addition, it was found that the new probe could be easily transferred into living HeLa cells by incubation with TMPyP. A time-gated luminescence imaging technique that can fully eliminate the short-lived background fluorescence from TMPyP and cell components has been successfully developed for monitoring the time-dependent generation of (1)O2 in living cells.  相似文献   

12.
The ligand 2,2′,2″-nitrilotriphenol reacts with P(III) and P(V) compounds to form corresponding phosphorus complexes. Syntheses and NMR data of 2,2′,2″-nitrilotriphenyl phosphite ( II ), 2,2′,2″-nitrilotriphenyl phosphate ( III ) and of a hydrolysis product of II , 2,2′-[N-(2-hydroxyphenyl)imino]diphenly phosphonate ( IV ), are reported, as well as crystal structures of II and IV . Phosphite II shows a bicycloundecane framework; no N?Pinteraction is present. The phosphonate IV shows two coordinated and one dangling phenol group; the N-atom does not interact with the P-atom. Strong acids protonate II as well as III to form cations: in these, NMR evidence indicates coordination of the N-atom to the P-atom.  相似文献   

13.
14.
Polyimides derived from 5,5′-[(2,2′,3,3′-tetrahydro-3,3,3′,3′-tetramethyl-1,1′-spirobi[1H-indene]-6,6′-diyl)bis(oxy)]bis-1,3-isobenzofurandione (spirobisindane dietheranhydride, SBIDA) and 20 plus aromatic diamines were prepared. The weight percentage of cyclic contaminants in each polyimide, estimated by gel permeation chromatography, ranges from 4 to 25%. The amount of cyclics formed in each polyimide depends on the distance and spatial orientation of the two amino groups on the aromatic diamines as well as the rigidity of the diamines. The formation of SBIDA-containing polyimide was found to be catalyzed by alkali metal ions even when the reaction was conducted in m-cresol. Thermal stability and glass transition temperature of those SBIDA-derived polyimides were examined with thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Two promising compositions were scaled up and their mechanical properties were obtained. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Foreword     
Abstract

The crystal structure of the dinucleating 2,2′:6′,2″-terpyridine ligand 6′,6″-bis(2-pyridyl)-2,2′:4′,4″:2″,2?-quaterpyridine (btpy) has been determined and the two metal-binding tpy domains shown to be essentially planar and co-planar (P 1, a = 6.304(2), b = 8.208(2), c = 11.535(3) Å, α = 97.42(2), β = 104.25(2), γ = 96.23(2)°, Z = 1, d c = 1.36 g cm?3, 2214 unique observed reflections with I > 1.5[sgrave] (I), R = 0.0583); a methodology involving sequential reaction with non-labile and labile metal centres allows the specific assembly of heterometallic supramolecular oligomers such as [(Xtpy)Ru(btpy)M(btpy)Ru(Ytpy)]n+ (M = cobalt(II), cobalt(III) or iron).  相似文献   

16.
Facile syntheses of two naturally occurring pyranoflavanoids, 3′,4′-methylenedioxy-2″,2″-dimethylpyrano-[5″,6″:7,8]-flavone (1) and (±)-ponganone III (2), have been achieved through the key intermediate chromene 6 by a DDQ-induced oxidative cyclization.  相似文献   

17.
A range of 6,6″-disubstituted derivatives of 2,2′: 6,2″-terpyridine have been prepared with the intention of forming macrocycles incorporating the 2,2′: 6′,2-?terpyridyl moiety. A high yield route to 6,6″-bis(methylhydrazino-4′-phenyl-2,2′:6′,2″-terpyridine is described, and a number of complexes of this novel pentadentate ligand have been prepared.  相似文献   

18.
Chelate Formation of N-Tris(2-aminoethyl)amine-N′,N′,N″,N″,N?,N?-hexaacetic Acid (H6TTAHA) and N-(Pyrid-2-yl-methyl)ethylenediamine-N,N′,N′-triacetic Acid (H3PEDTA) with Gadolinium(III) – Syntheses, Stability Constants, and NMR-Relaxivities The chelate formation of N-tris(2-aminoethyl)amine-N′,N′,N″,N″,N?,N?-hexaacetic acid (H6TTAHA) and N-(pyrid-2-yl-methyl)ethylenediamine-N,N′,N′-triacetic acid (H3PEDTA) with gadolinium(III) has been studied potentiometrically in aqueous solution at 25°C and μ = 0.1 (KCl). [Gd(TTAHA)]3?: 1gβM/ML = 19.0; {H[Gd(TTAHA)]}2?: 1gKH/MHL = 8.30; [Gd(PEDTA)]: 1gβM/ML = 15.56. Both 1 : 1 gadolinium(III) complexes were isolated as Na2H[Gd(C18H24N4O12)] · 3.5 H2O and [Gd(C14H16N3O6)] · 3 H2O, respectively. Their 1H-NMR relaxivities [1 · mmol?1 · s?1] ({H[Gd(TTAHA)]}2?: 9.5; [Gd(PEDTA)]: 8.8) offer promising applications for 1H-NMR imaging.  相似文献   

19.
Xiao Y  Ye Z  Wang G  Yuan J 《Inorganic chemistry》2012,51(5):2940-2946
Reactive oxygen species (ROS) are important mediators in a variety of pathological events, but the oxidative stress owing to excessive generation of ROS is implicated in many human diseases. In this work, we designed and synthesized a novel dual-functional chelating ligand, [4'-(p-aminophenoxy)methylene-2,2':6',2'-terpyridine-6,6'-diyl]bis(methylenenitrilo)tetrakis(acetic acid) (AMTTA), that can strongly coordinate with both Eu(3+) and Tb(3+) in aqueous solutions for the recognition and time-gated luminescence detection of highly ROS (hROS), hydroxyl radical ((?)OH), and hypochlorite (ClO(-)). The complexes AMTTA-Ln(3+) (Ln = Eu and Tb) are almost nonluminescent because of the photoinduced electron transfer from the electron-rich aminophenyl group to the terpyridine-Ln(3+) moiety but can rapidly react with hROS to afford highly luminescent complexes (4'-hydroxymethyl-2,2':6',2'-terpyridine-6,6'-diyl)bis(methylenenitrilo)tetrakis(acetate)-Ln(3+) (HTTA-Ln(3+)). Interestingly, when the AMTTA-Eu(3+)/Tb(3+) mixture (AMTTA/Eu(3+)/Tb(3+) = 2/1/1) was reacted with hROS, the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540)/I(610), showed a ratiometric response toward hROS, and the dose-dependent increase of the ratio displayed a double-exponential correlation to the concentration of hROS. This unique luminescence response allowed the AMTTA-Eu(3+)/Tb(3+) mixture to be used as a ratiometric probe for the time-gated luminescence detection of hROS.  相似文献   

20.
A new synthetic approach for the chiral terphenyl- and quaterphenyl-based diesters, bis[(1S)-1-methylheptyl] 1,1′:4′,1″-terphenyl-4,4″-dicarboxylates and bis[(1S)-1-methylheptyl] 1,1′:4′,1″:4″,1″′-quaterphenyl-4,4″′-dicarboxylates, has been developed and optimised. The approach presented allows the synthesis of a range of laterally substituted oligophenyl diesters in good yield. A number of pairs of S,S and R,R isomers have been synthesised and their thermodynamic properties measured. Most of the compounds have very good solubility in a variety of liquid crystalline host mixtures, and moderate helical twisting power, which has been determined for a number of nematic materials, either dielectrically positive or negative. The high birefringence of the oligophenyl core makes them suitable candidates as chiral dopants for medium to highly birefringent nematic materials for generating cholesteric and blue phase materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号