首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
使用手性阴离子表面活性剂作为超分子模板, 采用共结构导向法制备手性介孔二氧化硅(CMS), 并运用圆二色谱(CD)对CMS对映选择性吸附结果进行检测, 比较了有无共结构导向剂(CSDA)在介孔表面的排列对吸附选择性的影响. 结果表明, 当使用构型相反的手性超分子模板剂对原合成CMS材料的介孔内表面进行修饰时, 可诱导结构共导向剂N?三甲氧基硅基丙基?N, N, N?三甲基氯化铵(TMAPS)发生手性相反的排列进而导致完全相反的对映选择性吸附. 实验证明此方法合成的CMS的对映选择性吸附及分离能力主要是由修饰在介孔表面的TMAPS螺旋排列形成的手性印迹所导致. 此手性超分子模板诱导TMAPS手性印迹的策略具有一定的普适性, 可对原合成介孔材料对映选择性吸附进行原位调控, 对于拓展其在立体选择性识别、 不对称催化及药物输送等方面的应用具有一定的指导意义.  相似文献   

2.
In this work, the Kullback-Leibler information deficiency is probed as a chirality measure. It is argued that the information deficiency, calculated using the shape functions of the R and S enantiomers, considering one as reference for the other, gives an information theory based expression useful for quantifying chirality. The measure is evaluated for five chiral halomethanes possessing one asymmetric carbon atom with hydrogen, fluorine, chlorine, bromine, and iodine as substituents. To demonstrate the general applicability, a study of two halogen-substituted ethanes possessing two asymmetric carbon atoms has been included as well. The basic expression of the sum of the local information deficiency over all atoms can be decomposed into separate summations over coinciding and noncoinciding atoms, or into a global and a mixing entropy term, or into a local entropy contribution for each atom individually based on the Hirshfeld partitioning. Avnir's continuous chirality measure (CCM) has been computed and confronted with the information deficiency. Finally, the relationship between chirality and optical rotation is used to study the proposed measure. The results illustrate Mezey's holographic electron density theorem with an intuitively appealing division of the strength of propagation of the atomic chirality from an asymmetric carbon atom throughout the molecule. The local information deficiency of the carbon atom is proposed as a measure of chirality; more precisely, the difference in information between the R and the S enantiomer turns out to be a quantitative measure of the chirality of the system. It may be evaluated as the arithmetic mean of the different alignments, or considering only the alignment resulting in the highest similarity value, or using the QSSA alignment.  相似文献   

3.
The importance of and the difference between molecular versus structural core chirality of substances that form nanomaterials, and their ability to transmit and amplify their chirality to and within a surrounding condensed medium is yet to be exactly understood. Here we demonstrate that neat as well as disodium cromoglycate (DSCG) surface-modified cellulose nanocrystals (CNCs) with both molecular and morphological core chirality can induce homochirality in racemic nematic lyotropic chromonic liquid crystal (rac-N-LCLC) tactoids. In comparison to the parent chiral organic building blocks, D-glucose, endowed only with molecular chirality, both CNCs showed a superior chirality transfer ability. Here, particularly the structurally compatible DSCG-modified CNCs prove to be highly effective since the surface DSCG moieties can insert into the DSCG stacks that constitute the racemic tactoids. Overall, this presents a highly efficient pathway for chiral induction in an aqueous medium and thus for understanding the origins of biological homochirality in a suitable experimental system.  相似文献   

4.
A new method is described through which the macroscopic chirality of interfacial molecular assemblies of an achiral porphyrin can be mechanically controlled using an original yet efficient Langmuir-Blodgett (LB) technique. By using the unilateral compression geometry, we find that the assemblies deposited from the mirror regions of the LB trough display mirror macroscopic chirality. It is indicated that vortex-like flows could be generated during compression, and that it is the direction of this compression-generated vortex-like flow that determine the macroscopic chirality of the formed assemblies. Moreover, the standard sample-fabrication method with bilateral compression geometry is reformed, and we find that the samples formulated around the left-hand- and right-hand-side Langmuir barriers display opposite macroscopic chiralities. The results suggest that mechanically controlled supramolecular chirogenesis could be efficiently realized through such an LB technique. The investigation establishes a new forum for further investigation of the mechanically induced preferred supramolecular chirality in terms of interfacial organization, and provides the old LB technique with new opportunities for controlling the macroscopic chirality of a supramolecular system that is wholly composed of achiral units.  相似文献   

5.
The quest to understand the origin of chirality in biological systems has evoked an intense search for nonlinear effects in catalysis and pathways to amplify slight enantiomeric excesses in racemates to give optically pure molecules. The amplification of chirality in polymeric systems as a result of cooperative processes has been intensely investigated. Ten years ago, this effect was shown for the first time in noncovalent dynamic supramolecular systems. Since then, it has become clear that a subtle interplay of noncovalent interactions such as hydrogen-bonding, pi-pi stacking, and hydrophobic interactions is also sufficient to observe amplification of chirality in small molecules. Here we summarize the results obtained over the past decade and the general guidelines we can deduce from them. Predicting amplification of chirality is still impossible, but it appears to be a balance between different types of interactions, the formation of an intrinsically chiral object, and cooperative aggregation processes.  相似文献   

6.
The hierarchical transfer of chirality in nature, from the nano‐, to meso‐, to macroscopic length scales, is very complex, and as of yet, not well understood. The advent of scanning probes has allowed chirality to be monitored at the single molecule or monolayer level and has opened up the possibility to track enantiospecific interactions and chiral self‐assembly with molecular‐scale detail. This paper describes the self‐assembly of a simple, model molecule (naphtho[2,3‐a]pyrene) that is achiral in the gas phase, but becomes chiral when adsorbed on a surface. This polyaromatic hydrocarbon forms a stable and reversibly ordered system on Cu(111) in which the transmission of chirality from single surface‐bound molecules to complex 2D chiral architectures can be monitored as a function of molecular packing density and surface temperature. In addition to the point chirality of the surface‐bound molecule, the unit cell of the molecular domains was also found to be chiral due to the incommensurate alignment of the molecular rows with respect to the underlying metal lattice. These molecular domains always aggregated in groups of three, all of the same chirality, but with different rotational orientations, forming homochiral “tri‐lobe” ensembles. At a larger length scale, these tri‐lobe ensembles associated with nearest‐neighbor tri‐lobe units of opposite chirality at lower packing densities before forming an extended array of homochiral tri‐lobe ensembles at higher converges. This system displayed chirality at a variety of size scales from the molecular (≈1 nm) and domain (≈5 nm) to the tri‐lobe ensemble (≈10 nm) and extended array (>25 nm) levels. The chirality of the tri‐lobe ensembles dictated how the overall surface packing occurred and both homo‐ and heterochiral arrays could be reproducibly and reversibly formed and interchanged as a function of surface coverage. Finally, these chirally templated surfaces displayed remarkable enantiospecificity for naphtho[2,3‐a]pyrene molecules adsorbed in the second layer. Given its simplicity, reversibility, and rich degree of order, this system represents an ideal test bed for the investigation of symmetry breaking and the hierarchical transmission of chirality through multiple length scales.  相似文献   

7.
A self-progressing chiral self-assembly form an achiral and C6-symmetric molecule, resulting in a chiral amplification with prolonging the time. The system shows three distinct luminescent colors with the change of time in the same solution system.  相似文献   

8.
A twofold helix (2(1) helix) is an essential motif in approximately 70?% of organic crystals. Although handedness of 2(1) helix has not been discussed from a mathematical viewpoint, we noticed that the handedness can be defined by considering the molecular shape and manner of assembly. Herein we propose the supramolecular-tilt-chirality (STC) method to define the handedness, and illustrate it by way of some examples. We believe that establishment of the systematic rules for supramolecular chirality will contribute to the progression of supramolecular chemistry and material science.  相似文献   

9.
Optical chirality sensing has attracted a lot of interest due to its potential in high-throughput screening in chirality analysis. A molecular sensor is required to convert the chirality of analytes into optical signals. Although many molecular sensors have been reported, sensors with wide substrate scope remain to be developed. Herein, we report that the amide naphthotube-based chirality sensors have an unprecedented wide scope for chiroptical sensing of organic molecules. The substrates include, but are not limited to common organic products in asymmetric catalysis, chiral molecules with inert groups or remote functional groups from their chiral centers, natural products and their derivatives, and chiral drugs. The effective chirality sensing is based on biomimetic recognition in water and on effective chirality transfer through guest-induced formation of a chiral conformation of the sensors. Furthermore, the sensors can be used in real-time monitoring on reaction kinetics in water and in determining absolute configurations and ee values of the products in asymmetric catalysis.  相似文献   

10.
Chirality is important to chemistry, biology and optoelectronic materials. The study on chirality has lasted for more than 170 years since its discovery. Recently, chiral materials with aggregation-induced emission (AIE) have attracted increasing interest because of their fascinating photophysical properties. In this review, we discussed the recent development of chiral materials with AIE properties, including their molecular structures, self-assembly and functions. Generally, the most effective strategy to design a chiral AIE luminogen (AIEgen) is to attach a chiral scaffold to an AIE-active fluorophore through covalent bonds. Moreover, some propeller-like or shell-like AIEgens without chiral units exhibit latent chirality upon mirror image symmetry breaking. The chirality of achiral AIEgens can also be induced by some optically active molecules through non-covalent interactions. The introduction of an AIE unit into chiral materials can enhance the efficiency of their circularly polarized luminescence (CPL) in the solid state and the dissymmetric factors of their helical architectures formed through self-assembly. Thus, highly efficient circularly polarized organic light-emitting diodes (CPOLEDs) with AIE characteristics are developed and show great potential in 3D displays. Chiral AIEgens are also widely utilized as “turn on” sensors for rapid enantioselective determination of chiral reagents. It is anticipated that the present review can entice readers to realize the importance of chirality and attract much more chemists to contribute their efforts to chirality and AIE study.

This review highlights the recent development of chiral materials with aggregation-induced emission properties, including their molecular structures, self-assembly and functions.  相似文献   

11.
Chirality is a fundamental construct in nature which arises from an antisymmetric arrangement of atoms, molecules, or larger structures, resulting in the formation of nonsuperimposable mirror images. Bulk chiral effects can easily be measured using circular dichroism (CD) or optical rotary dispersion (ORD). However, the imaging of chirality originating from molecular surface films cannot be obtained with these linear optical methods. By using chiral second harmonic generation (C-SHG), with its inherent surface sensitivity and ability to discriminate between the symmetry of surface adsorbed species in combination with a counter-propagating optical geometry, we have developed the first nonlinear chiral microscope. In the study presented here, the intrinsic chirality of R- and S-(+)-1,1'-bi-2-naphthol (RBN, SBN) has been used to image a patterned planar supported lipid bilayer (PSLB) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using C-SHG. Spatial resolution of the patterned PSLB is visible when either RBN or SBN is intercalated into the membrane. No image is observed when a racemic mixture of RBN and SBN is present. The C-SHG images are compared with those obtained from fluorescence microscopy to verify the C-SHG imaging technique. The results presented here demonstrate that C-SHG possesses the requisite surface selectivity and sensitivity to detect interfacial chirality and provides a direct route for the visualization of chirality originating from molecular surface films.  相似文献   

12.
《Liquid crystals》1999,26(9):1301-1305
Lyotropic liquid crystals can exhibit phase chirality. The mechanism behind the transfer of chirality between a chiral dopant and a liquid crystalline host phase is still under discussion. Our own recent results and proposals are the following. Lyotropic phase chirality can exist even at very low concentrations of chiral dopants, with less than 1 chiral dopant per 50 micelles. There is evidence for an intramicellar double twist which could be due to the induction of chiral conformations in the achiral surfactant chains. The chirality of arbitrary molecules can be quantified by means of the 'Hausdorff distance'. Increasing chirality of a dopant does not necessarily imply increasing helical twisting power, and molecular similarity between chiral guest and achiral host is essential for effective chirality transfer.  相似文献   

13.
A chiral selection process in a self‐assembled soft monolayer of an achiral amphiphile as a consequence of its interaction with chiral species dissolved in the aqueous subphase, is reported. The extent of the chiral selection is statistically measured in terms of the enantiomorphic excess of self‐assembled submillimeter domains endowed with well‐defined orientational chirality that is unambiguously resolved using optical microscopy. Our results show that the emergence of chirality is mediated by electrostatic interactions and significantly enhanced by hydrophobic effects. This chiral chemical effect can be suppressed and even reversed by opposing a macroscopic physical influence, such as vortical stirring. This result gives evidence for the crucial role of hydrodynamic effects in supramolecular aggregation.  相似文献   

14.
Is There a “Most Chiral Tetrahedron”?   总被引:1,自引:0,他引:1  
A degree of chirality is a function that purports to measure the amount of chirality of an object: it is equal for enantiomers, vanishes only for achiral or degenerate objects and is similarity invariant, dimensionless and normalisable to the interval [0,1]. For a tetrahedron of non-zero three-dimensional volume, achirality is synonymous with the presence of a mirror plane containing one edge and bisecting its opposite, and hence it is easy to design degree-of-chirality functions based on edge length that incorporate all constraints. It is shown that such functions can have largest maxima at widely different points in the tetrahedral shape space, and by incorporation of appropriate factors, the maxima can be pushed to any point in the space. Thus the phrase "most chiral tetrahedron" has no general meaning: any chiral tetrahedron is the most chiral for some legitimate choice of degree of chirality.  相似文献   

15.
A unique feature of synthetic helical polymers for the detection and amplification of chirality is briefly described in this article. In sharp contrast to host-guest and supramolecular systems that use small synthetic receptor molecules, chirality can be significantly amplified in a helical polymer, such as poly(phenylacetylene)s with functional pendants, which enable the detection of a tiny imbalance in biologically important chiral molecules through a noncovalent bonding interaction with high cooperativity. The rational design of polymeric receptors can be possible by using chromophoric helical polymers combined with functional groups as the pendants, which target particular chiral guest molecules for developing a highly efficient chirality-sensing system. The chirality sensing of other small molecular and supramolecular systems is also briefly described for comparison.  相似文献   

16.
Recently there has been an ever growing interest and activity in the attempts on quantifying chirality which is causing this concept to become a diverse and uncorrelated entity. Possible reasons for this complication are presently discussed. It is shown that it becomes necessary to distinguish between geometric and physical chiralities. For geometrical chiral sets it is necessary to distinguish between equi- and sub-dimensional sets where the metrization of their chirality can be generalized and unified only for equi-dimensional sets. This is accomplished by the method of overlap. For sub-dimensional sets there exists no general and unique mode of quantifying chiralities, except for discrete and finite sets of points such as the comers of polyhedron, for which the approach of Hausdorff distances proves to be an efficient method of quantifying the chirality presented by their distribution. The domain of physical chiralities, although being of natural significance, is still in a premature state of development. Each physical property may have a different chiral measure so that there is no sense in a claim of unification. Equi- and sub-dimensionality exist also for physical chiralities and they can be quantified by the overlap method for equi-dimensional sets.  相似文献   

17.
Abstract

Voltage-temperature phase diagrams of liquid-crystalline blue-phase (BP) systems have been determined by means of polarizing microscopy and Bragg reflection spectroscopy. A three-component system composed of two non-chiral nematics with Δ? > 0 and Δ? < 0, and one chiral nematic with Δ? ? 0 has been studied, which allows the independent variation of chirality and dielectric anisotropy (Δ?) over wide ranges. Mixtures of positive and negative resultant dielectric anisotropy have been investigated. They exhibit up to three zero-field BPs: BPI, BPII and BPIII (fog phase). Besides field-induced BP to cholesteric transitions, several field-induced BPs have been detected that are unstable in the field-off state. The effect of chirality and dielectric anisotropy on the transition temperature and the transition field strengths are evaluated, as well as the conditions for the occurrence of the field-induced BPs.  相似文献   

18.
Bilayers and monolayers are excellent models of biological membranes. The constituents of the biological membranes such as lipids, cholesterols and proteins are chiral. Chiral molecules are abundant in nature (protein, nucleic acid and lipid). It is obvious that relationship between chirality and morphology (as well as function) of biological membrane is of interest for its fundamental importance and has technological implication regarding various membrane functions. The recent years have witnessed that a number of experimental studies in biomimetic systems have shown fascinating morphologies where chirality of the constituent molecule has decisive influence. Significant progress is made towards the understanding of these systems from the theoretical and computational studies. Helfrich's concept of intrinsic force arising from chirality is a milestone in understanding the biomimetic system such as bilayer and the related concepts, further progresses in molecular understanding made in recent years and experimental studies revealing the influence of chirality on morphology are the focus of the present review. Helfrich's concept of intrinsic force arising due to chirality is useful in understanding two-dimensional bilayers and one-dimensional monolayers and related mimetic systems. Various experimental techniques are used, which can probe the molecular architecture of these mimetic systems at different length scales and both macroscopic (thermodynamic) as well as microscopic (molecular) theories are developed. These studies are aimed to understand the role of chirality in the molecular interaction when the corresponding molecule is present in an aggregate. When one looks into the variety of morphologies exhibited by three-dimensional bilayer and two-dimensional monolayer, the later types of systems are more exotic in the sense that they show more diversity and interesting chiral discrimination. Helfrich's concept of intrinsic force may be considered useful in both cases. The intrinsic force due to chirality is the decisive factor in determining morphology which is explained by molecular approaches. Finally, biological and technological implications of such morphological variations are briefly mentioned.  相似文献   

19.
Through mimicking both the chiral and energy transfer in an artificial self‐assembled system, not only was chiral transfer realized but also a dual upconverted and downconverted energy transfer system was created that emit circularly polarized luminescence. The individual chiral π‐gelator can self‐assemble into a nanofiber exhibiting supramolecular chirality and circularly polarized luminescence (CPL). In the presence of an achiral sensitizer PdII octaethylporphyrin derivative, both chirality transfer from chiral gelator to achiral sensitizer and triplet‐triplet energy transfer from excited sensitizer to chiral gelator could be realized. Upconverted CPL could be observed through a triplet–triplet annihilation photon upconversion (TTA‐UC), while downconverted CPL could be obtained from chirality‐transfer‐induced emission of the achiral sensitizer. The interplay between chiral energy acceptor and achiral sensitizer promoted the communication of chiral and excited energy information.  相似文献   

20.
Chiral materials have been of the interests of scientists for nearly a century. People have endeavored a great effort to manipulate the chirality of various self-assembled materials. Among these efforts, cyclodextrins are used only in recent years, although it has long been recognized that the chirality of cyclodextrin can be transferred to the guest. In this review, we for the first time summarize the recent advancement of the supramolecular chirality manipulation on the basis of the host-guest chemistry of cyclodextrins. By using the simple Harata-Kodaka's rule, natural cyclodextrins can be exploited in a dynamic manner to create chirality inversion materials through crystalline self-assembly, which is facile and environment-friendly. What is more, we also discussed the remarks on future outlooks at the end of this article and expect it to stimulate a rapid development on both the theory and application level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号