首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the synthesis and the cation-radical polymerization (Scholl reaction) of 1,3-bis[4-(1-naphthoxy) benzoyl] benzene ( 6 ) and 1,4-bis[4-(1-naphthoxy) benzoyl]- benzene ( 7 ) initiated by FeCI3. This polymerization produced poly(ether ether ketone ketone)s (PEEKK) of number average molecular weight (M?n) up to 5400 g/mol. The synthesis of bis[4-(1-naphthoxy) phenyl] methane ( 8 ), 1,3-bis[4-(1-napthoxy) phenylmethyl] benzene ( 9 ), and 1,4-bis[4-(1-naphthoxy) phenylmethyl] benzene ( 10 ) are also described. Polyethers of M?n up to 15400 g/mol at a FeCl3/monomer molar ratio of 2/1 were obtained. An increased polymerizability of the monomers 9 and 10 containing two CH2 groups versus that of the corresponding monomers containing two carbonyl groups ( 6 and 7 ) was observed. This enhanced polymerizability was explained based on the increased nucleophilicity of monomers 9 and 10 .  相似文献   

2.
A fluorine-containing diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (BAPPH) ( II ), was synthesized in two steps on condensation of 2,2-bis(4-hydroxyphenyl)hexafluoropropane with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,2-bis[4-(4-nitrophenoxy)phenyl]hexafluoropropane ( I ), followed by reduction with hydrazine monohydrate/Pd—C. Fluorine-containing polyamides and copolyamides having inherent viscosities 0.41–0.88 dL g−1 were prepared by direct polycondensation of BAPPH with various aromatic diacids or with mixed diacids, by triphenyl phosphite and pyridine in N-methyl-2-pyrrolidinone (NMP). The polyamides were examined by elemental analysis, IR spectra, inherent viscosity, x-ray diffraction, solubility, DSC, and TGA. The diffractogram showed that the polyamides were crystalline except IVb , IVc , IVf , and Vc . Almost all polyamides were soluble in polar aprotic solvents. The polymers obtained from BAPPH lost no mass below 350°C, with 10% loss of mass being recorded above 467°C in nitrogen. These aromatic polyamides had glass transition temperatures in the 221–253°C range. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Brillouin spectroscopy was used to investigate viscoelastic properties of a two-component system consisting of a high viscosity liquid (HVL) and a low viscosity liquid (LVL), both able to polymerize. The model liquids were: 2,2-bis[4-(2-hydroxymethacryloxypropoxy)phenyl]propane (abbreviated as bis-GMA, HVL) and benzyl methacrylate (BzMA, LVL). The viscosity of the system was regulated by changing the monomer ratio. Hypersonic velocity and attenuation coefficient were investigated in a temperature range covering viscoelastic relaxation process. The dependence of the longitudinal viscosity on the system composition was determined. Additionally, the Brillouin studies were accompanied by some supplementary experimental methods, like low frequency shear viscosity measurements and observations of phase transitions by differential scanning calorimetry (DSC). The investigated monomer mixtures were then polymerized in a light-induced process and the polymerization kinetic curves were measured to find the possible correlation between the viscoelastic properties of the monomer mixture (as observed by Brillouin spectroscopy) and the polymerization course.  相似文献   

4.
Bis[o-(hydrosilyl)phenyl]cuprates and bis[o-(fluorosilyl)phenyl]cuprates were prepared by reacting [o-(hydrosilyl)phenyl]lithiums and [o-(fluorosilyl)phenyl]lithiums, respectively, with copper salts, such as CuCN and Cu(OPiv)2. The phenylcuprates underwent oxidative coupling to afford 2,2′-bis(hydrosilyl)biphenyls and 2,2′-bis(fluorosilyl)biphenyls.  相似文献   

5.
A series of new soluble polyamides having isopropylidene and methyl-substituted arylene ether moieties in the polymer chain were prepared by the direct polycondensation of 3,3′,5,5′-tetramethyl-2,2-bis[4-(4-carboxyphenoxy)phenyl]propane and various diamines in N-methyl-2-pyrrolidinone (NMP) containing CaCl2 using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with moderate to high inherent viscosities of 0.85–1.47 dL g−1 while the weight-average molecular weight and number-average molecular weight were in the range of 86,700–259,000 and 43,300–119,000, respectively. All the polymers were readily dissolved in polar aprotic solvents such as NMP, N,N-dimethylacetamide, and N,N-dimethylformamide, as well as less polar solvents such as m-cresol and pyridine, and even soluble in tetrahydrofuran. These polymers were solution-cast into transparent, flexible and tough films. All of the polymers were amorphous and the polyamide films had a tensile strength range of 82–122 MPa, an elongation at break range of 6–18%, and a tensile modulus range of 2.0–2.8 GPa. These polyamides had glass transition temperatures between 233–260°C and 10% weight loss temperatures in the range of 450–489 and 459–493°C in nitrogen and air atmosphere, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1997–2003, 1999  相似文献   

6.
A dicarboxylic acid ( 1 ) bearing two pre-formed imide rings, was prepared from the condensation of 2,2-bis[4-(4-aminophenoxy)phenyl]propane and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.53–1.68 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide—diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these poly(amide-imide)s were in the range of 237–293°C and the 10% weight loss temperatures were above 508°C in nitrogen. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Maleic and citraconic anhydrides were reacted with several diamines to obtain a novel class of high temperature resistant bisimides.1–3 The bisimides were characterized by melting points, elemental analysis, UV–Vis, 1H- and 13C-NMR, and mass spectral analysis. The bisimide monomers were then polymerized by the addition process. A poly(amidemaleimide) was also synthesized by reacting maleic anhydride with p-aminobenzhydrazide. The thermal stability of these highly crosslinked poly(bisimide)s were examined by TGA and DTA. A neat bisimide monomer obtained from 2,2′-bis[4(p-aminophenoxy)phenyl] propane with maleic anhydride namely, 2,2′-bis[4-(p-maleimidophenoxy)phenyl]propane was reacted with 2,2′-bis[4(p-aminophenoxy)phenyl]propane by the Michael reaction.4 A fiber glass cloth reinforced laminate was prepared from bismaleimide and amine mixture and the mechanical properties of the test laminate evaluated.  相似文献   

8.
Cationic polymerization of 2,2-bis{4-[(2-vinyloxy)ethoxy]phenyl}propane [CH2CH O CH2CH2O C6H4 C(CH3)2 C6H4 OCH2CH2 O CHCH2; 2], a divinyl ether with oxyethylene units adjacent to the polymerizable vinyl ether groups and a bulky central spacer, was investigated in CH2Cl2 at 0°C with the diphenyl phosphate [(C6H5O)2P(O)OH]/zinc chloride (ZnCl2) initiating system. The polymerization proceeded quantitatively and gave soluble polymers up to 85% monomer conversion. In the same fashion as the polymerization of 1,4-bis[2-vinyloxy(ethoxy)]benzene (CH2CH O CH2CH2O C6H4 OCH2CH2 O CHCH2; 1) that we already studied, the content of the unreacted pendant vinyl ether groups of the produced soluble polymers decreased with monomer conversion, and almost all the pendant vinyl ether groups were consumed in the soluble products prior to gelation. Alternatively, endo-type double bonds were gradually formed in the polymer main chains by chain transfer reactions and other side reactions as the polymerization proceeded. The polymerization behavior of isobutyl vinyl ether (3), a monofunctional vinyl ether, under the same conditions, showed that the endo-type olefins in the polymer backbones are of no polymerization ability with the growing active species involved in the present polymerization systems. These results indicate that the intermolecular crosslinking reactions occurred primarily by the pendant vinyl ether groups, and the final stage of crosslinking process leading to gelation also may occur by the small amount of the residual pendant vinyl ether groups (supposedly less than 2%). The formation of the soluble polymers that almost lack the unreacted pendant vinyl ether groups is most likely due to the frequent occurrence of intramolecular crosslinking reactions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1931–1941, 1999  相似文献   

9.
Intramolecular cycloaddition of [1,1′-binaphthyl]-2,2′-bis(allylamine) Unlike the 1,1′-binaphthyl-2,2′-bis(allylether) the corresponding [1,1′-binaphthyl]-2,2′-bis(allylamine) (1) upon heating to 230° in mesitylene undergoes thermal decomposition only. However, when 1 is heated in a mixture of 2-methylaminoethanol and water, besides 3 the policyclic ketones 4 and 5 are formed in isolated yields of 28 and 10%, respectively (Scheme 1). Intermediates are the imines corresponding to 4 and 5 which are hydrolysed under the reaction conditions rather than decomposed. The imines are formed by a intramolecular Diels-Alder reaction, in which the double bond of one N-allylgroup reacts with the naphthalene ring of the second half of the molecule. The policyclic ketones 4 and 5 are characterized as acetates 6 and 7 , respectively, and as the acetylated reduced products 11 , and 12 and 13 , respectively. The constitutions of all compounds are derived from spectroscopic data, chiefly from the 1H-NMR. spectra.  相似文献   

10.
The compound 1,3-bis(4-vinylnaphthyl)propane was prepared by a convenient dehydration of 1,3-bis[4-(1-hydroxyethyl)naphthyl]propane. The structure was confirmed by nuclear magnetic resonance (NMR) spectroscopy. The monomer was polymerized by antimony pentachloride, tin tetrachloride, titanium tetrachloride, or boron trifluoride etherate at 0°C in toluene, 1,2-dichloroethane, or a mixed solvent of 1,2-dichloroethane and nitromethane. Most of runs except for antimony pentachloride–catalyzed ones gave mainly benzene-soluble polymers. The structures of the polymers were studied by several spectroscopic methods. Comparison of NMR and fluorescence spectroscopic data of the polymers with those of syn-and anti-[3.3](1,4)napthalenophane was especially valuable in leading to the conclusion that they were cyclopolymers containing predominantly syn-[3.3]-(1,4)naphthalenophane units in the main chain.  相似文献   

11.
Reaction of azulene (1) with 1,2-bis[4-(dimethylamino)phenyl]-1,2-ethanediol (2) in a mixed solvent of methanol and acetonitrile in the presence of 36% hydrochloric acid at 60 °C for 3 h gives 2-(azulen-1-yl)-1,1-bis[4-(dimethylamino)phenyl]ethylene (3) (8% yield), 1-(azulen-1-yl)-(E)-1,2-bis[4-(dimethylamino)phenyl]ethylene (4) (28% yield), and 1,3-bis{2,2-bis[4-(dimethylamino)phenyl]ethenyl}azulene (5) (9% yield). Besides the above products, this reaction affords 1,1-di(azulen-1-yl)-2,2-bis[4-(dimethylamino)phenyl]ethane (6) (15% yield), a meso form (1R,2S)-1,2-di(azulen-1-yl)-1,2-bis[4-(dimethylamino)phenyl]ethane (7) (6% yield), and the two enantiomeric forms (1R,2R)- and (1S,2S)-1,2-di(azulen-1-yl)-1,2-bis[4-(dimethylamino)phenyl]ethanes (8) (6% yield). Furthermore, addition reaction of 3 with 1 under the same reaction conditions as the above provides 6, in 46% yield, which upon oxidation with DDQ (=2,3-dichloro-5,6-dicyano-1,4-benzoquinone) in dichloromethane at 25 °C for 24 h yields 1,1-di(azulen-1-yl)-2,2-bis[4-(dimethylamino)phenyl]ethylene (9) in 48% yield. Interestingly, reaction of 1,1-bis[4-(dimethylamino)phenyl]-2-(3-guaiazulenyl)ethylene (11) with 1 in a mixed solvent of methanol and acetonitrile in the presence of 36% hydrochloric acid at 60 °C for 3 h gives guaiazulene (10) and 3, owing to the replacement of a guaiazulen-3-yl group by an azulen-1-yl group, in 91 and 46% yields together with 5 (19% yield) and 6 (13% yield). Similarly, reactions of 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (12) and 1,1-bis{4-[2-(dimethylamino)ethoxy]phenyl}-2-(3-guaiazulenyl)ethylene (13) with 1 under the same reaction conditions as the above provide 10, 2-(azulen-1-yl)-1,1-bis(4-methoxyphenyl)ethylene (16), and 1,3-bis[2,2-bis(4-methoxyphenyl)ethenyl]azulene (17) (93, 34, and 19% yields) from 12 and 10 and 2-(azulen-1-yl)-1,1-bis{4-[2-(dimethylamino)ethoxy]phenyl}ethylene (18) (97 and 58% yields) from 13.  相似文献   

12.
The reaction of methyl 2-bromo-6-(trifluoromethyl)-3-pyridinecarboxylate ( 1 ) with methanesulfonamide gave methyl 2-[(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridine-carboxylate ( 2 ). Alkylation of compound 2 with methyl iodide followed by cyclization of the resulting methyl 2-[methyl(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridinecarboxylate ( 3 ) yielded 1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 4 ). The reaction of compound 4 with α,2,4-trichlorotoluene, methyl bromopropionate, methyl iodide, 3-trifluoromethylphenyl isocyanate, phenyl isocyanate and 2,4-dichloro-5-(2-propynyloxy)phenyl isothiocyanate gave, respectively, 4-[(2,4-dichlorophenyl)methoxy]-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazine 2,2-dioxide ( 5 ), methyl 2-[[1-methyl-2,2-dioxido-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4-yl]oxy]propanoate ( 6 ), 1,3,3-trimethyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 7 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-[3-(trifluoromethyl)phenyl]-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 8 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-phenyl-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 9 ) and N-[2,4-dichloro-5-(2-propynyloxy)phenyl]-4-hydroxy-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2] thiazine-3-carboxamide 2,2-dioxide ( 10 ).  相似文献   

13.
The reaction between 3,3-bis(methoxyphenyl)-3H-naphtho[2,1-b]pyran and 1,3-bis(methoxyphenyl)-1H-naphtho[2,1-b]pyran under acid conditions gives a 7a,15a-dihydro-7a,15-bis(methoxyphenyl)-16-[2,2-bis(methoxyphenyl)-l-vinyl]dinaphtho-[2,1-b:2,1-g]-4H,5H-pyrano[2,3-b]-pyran.  相似文献   

14.
Poly[2,2-bis(4-oxycyclohexyl)propane adipate] was formed by melt polymerizing adipic acid and 2,2-bis(4-hydroxycyclohexyl)propane in the presence of n-butylhydroxyoxostannane. This polyester possessed a melting temperature (Tm) of 200°C and a glass transition temperature (Tg) of 75°C. An excellent notched impact strength of 22 ft. lbs./in. was its best physical property.  相似文献   

15.
付桂云  魏梅红  盛寿日  姜建文 《应用化学》2010,27(12):1478-1480
在碘化亚铜、四丁基溴化铵和磷酸钾存在下,9,9-二(4-羟基苯基)呫吨(1)和4-甲基碘苯(2)于N,N-二甲基甲酰胺溶剂中发生Ullmann偶联反应,加热回流反应24 h,以95%的产率合成了中间体--9,9-二[4-(4-甲基苯氧基)苯基]呫吨(3),继而加入催化量的N-溴代丁二酰亚胺并在光照条件下,将中间体3氧化得到一种新型芳香族二羧酸--9,9-二[4-(4-羧基苯氧基)苯基]呫吨(4),其产率为84%,二步反应总收率为79.8%。 目标化合物4经1H NMR、13C NMR、IR和元素分析测试技术确定了其结构。 该法具有原料易得,操作简单,反应条件温和,收率高等优点。  相似文献   

16.
2,2‐Bis[4(4‐aminophenoxy)phenyl]phthalein‐3′,5′‐bis(trifluoromethyl)anilide (6FADAP), containing fluorine and phthalimide moieties, was synthesized via the Williamson ether condensation reaction from 1‐chloro‐4‐nitrobenzene and phenolphthalein‐3′,5′‐bis(trifluoromethyl)anilide, which was followed by hydrogenation. Monomers such as 2,2‐bis[4(4‐aminophenoxy)phenyl]phthalein‐anilide containing phthalimide groups and 2,2‐bis[4(4‐aminophenoxy)phenyl]phthalein containing only phthalein moieties were also synthesized for comparison. The monomers were first characterized by Fourier transform infrared (FTIR), 1H NMR, 19F NMR, elemental analysis, and titration and were then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride. The polyimides were designed to have molecular weights of 20,000 g/mol via off‐stoichiometry and were characterized by FTIR, NMR, gel permeation chromatography (GPC), differential scanning calorimetry, and thermogravimetric analysis. Their solubility, water absorption, dielectric constant, and refractive index were also evaluated. The polyimides prepared with 6FADAP, containing fluorine and phthalimide moieties, had excellent solubility in N‐methylpyrrolidinone, N,N‐dimethylacetamide, tetrahydrofuran, CHCl3, tetrachloroethane, and acetone, and GPC analysis showed a molecular weight of 18,700 g/mol. The polyimides also exhibited a high glass‐transition temperature (290 °C), good thermal stability (~500 °C in air), low water absorption (1.9 wt %), a low dielectric constant (2.81), a low refractive index, and low birefringence (0.0041). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3361–3374, 2003  相似文献   

17.
Conclusions The reaction of 2,2-bis(4-hydroxy-3-N,N-diethylaminomethylphenyl)propane with triethyl phosphite gave 2,2-bis(4-ethoxy-3-diethylphosphonomethylphenyl)propane via the intermediate formation of a compound with a pentacovalent phosphorus atom. In the presence of acetic acid the reaction leads to 2,2-bis(4-hydroxy-3-diethylphosphonomethylphenyl)propane.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1621–1624, July, 1978.  相似文献   

18.
以1-氨基-5-巯基-2-(对取代苯基)-1,3,4-均三唑和5-取代苯基-2-呋喃甲酰异硫氰酸酯为原料, 合成了10个未见文献报道的含苯环连呋喃的均三唑并噻二唑类衍生物, 通过元素分析, 1H NMR, IR和MS确定化合物的结构, 初步生物活性测试表明标题化合物具有一定的除草活性.  相似文献   

19.
A novel tetrafunctional epoxy resin, N,N,N,Nt'-tetraglycidyl-2,2-bis[4-(p-aminophen-oxy)phenyl]propane, has been synthesised. The curing kinetics and thermal stability of the cured product have been investigated using various amine curing-agents. The overall activation energy for the curing reaction is observed to be in the range 30.3–126.2 kJ mol−1. The cured products have good thermal stability.  相似文献   

20.
2-R-benzo[e][1,3,2]dioxaphosphinin-4-ones react with perfluorodiacetyl under mild conditions to form relatively labile spirophosphoranes containing a 1,3,2-dioxaphosphole ring. These compounds gradually convert to more stable 2-R-4,5-bis(trifluoromethyl)-1,3,2λ5-dioxaphosphole 2-oxides and diastereometic 2-R-4-(trifluoroacetyl)-4-(trifluoromethyl)benzo[f][1,3,2λ5]dioxaphosphepine 2-oxides, whose structure was confirmed by means of NMR and IR spectroscopy. The structure of 4′,5′ -bis(trifluoromethyl)-4-oxo-2-(2,2,3,3-tetrafluoropropoxy)-2λ 5-spiro[benzo[e][1,3,2]dioxaphosphinine-2,2′-[1,3,2]dioxaphosphole] was confirmed by X-ray diffraction analysis.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 4, 2005, pp. 587–599.Original Russian Text Copyright © 2005 by Konovalova, Mironov, Ivkova, Zagidullina, Gubaidullin, Litvinov, Kurykin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号