首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The polymerization of 4-vinyl-1-cyclohexene (4VCHE) with Ziegler–Natta catalysts was studied. The polymerization of 4VCHE by the vinyl group took place with TiCl3–aluminum alkyls catalysts, while vinylene group of 4VCHE did not participate in the reaction, but it affected the polymerization rate of 4VCHE. The effects of aluminum alkyl and type of TiCl3 on the polymerization were examined. The overall activation energy for the polymerization was estimated to be 41.9kJ/mol. Monomer-isomerization copolymerization of 4VCHE and trans-2-butene occurred with the TiCl3-(i-C4H9)3Al catalyst to give copolymers consisting of 4VCHE and 1-butene units.  相似文献   

2.
5-Phenyl-2-pentene (5Ph2P) was found to undergo monomer-isomerization polymerization with TiCl3–R3Al (R = C2H5 or i-C4H9, Al/Ti > 2) catalysts to give a polymer consisting of exclusively 5-phenyl-1-pentene (5Ph1P) unit. The geometric and positional isomerizations of 5Ph2P to its terminal and other internal isomers were observed to occur during polymerization. The catalyst activity of alkylaluminum examined to TiCl3 was in the following order: (C2H5)3Al > (i-C4H9)3Al > (C2H5)2AlCl. The rate of monomer-isomerization polymerization of 5Ph2P with TiCl3–(C2H5)3Al catalyst was influenced by both the Al/Ti molar ratio and the addition of nickel acetylacetonate [Ni(acac)2], and the maximum rate was observed at Al/Ti = 2.0 and Ni/Ti = 0.4 in molar ratios.  相似文献   

3.
Monomer-isomerization polymerization of cis-2-butene (c2B) with Ziegler–Natta catalysts was studied to find a highly active catalyst. Among the transition metals [TiCl3, TiCl4, VCl3, VOCl3, and V (acac)3] and alkylauminums used, TiCl3? R3Al (R = C2H5 and i-C4H9) was found to show a high-activity for monomer-isomerization polymerization of c2B. The polymer yield was low with TiCl4? (C2H5)3Al catalyst. However, when NiCl2 was added to this catalyst, the polymer yield increased. With TiCl3? (C2H5)3Al catalyst, the effect of the Al/Ti molar ratio was observed and a maximum for the polymer yields was obtained at molar ratios of 2.0–3.0, but the isomerization increased as a function of Al/Ti molar ratio. The valence state of titanium on active sites for isomerization and polymerization is discussed.  相似文献   

4.
Monomer-isomerization polymerization of propenycyclohexane (PCH) with TiCl3 and R3-xAICIx (R = C2H5 or i-C4H9, x = 1–3) catalysts was studied. It was found that PCH underwent monomer-isomerization polymerization to give a high molecular weight polymer consisting of an allylcyclohexane (ACH) repeat unit. Among the alkyaluminum cocatalysts examined, (C2H5)3Al was the most effective cocatalyst for the monomer-isomerization polymerization of PCH, and a maximum for the polymerization was observed at a molar ratio of Al/Ti of about 2.0. The addition of isomerization catalysts such as nickel acetylacetonate [Ni(acac)2] to the TiCl3–(C2H5)3Al catalyst accelerated the monomer-isomerization polymerization of PCH and gave a maximum for the polymerization at a Ni/Ti molar ratio of 0.5. PCH also undergoes monomer-isomerization copolymerization with 2-butene (2B).  相似文献   

5.
The mechanism of formation and stereoregularity of poly(cyanoethyl)oxymethylene have been studied. The polymerization was carried out at ?78°C with use of aluminum compounds [Al(C2H5)3, Al(C2H5)2Cl, Al(C2H5)Cl2, and AlCl3] and complex catalysts [Al(C2H5)3–TiCl4, Al(C2H5)3–TiCl3, and Al(C2H5)2Cl–TiCl3] as initiators. The stereoregularity of poly(cyanoethyl)oxymethylene was estimated from the optical density ratio, D1258/D1270, in the infrared absorption spectrum. Polymer yields were observed to depend upon the aluminum compound used as initiators, while the stereoregularity of the polymer was nearly independent of the particular aluminum compound used. As the catalyst ratio of titanium chloride to aluminum compound increased, the polymer yield was found to increase to a maximum and then to decrease with further increase of the ratio. It is supposed that titanium chlorides themselves increase the acid strength of aluminum compounds through chlorination, resulting in the change of the polymer yield. The highest stereoregularity of poly(cyanoethyl)oxymethylene was attained by increasing the molar ratio of titanium trichloride to aluminum and by treating β-cyanopropionaldehyde (CPA) with titanium trichloride prior to the polymerization. Complex formation of the nitrile group of CPA with titanium is considered responsible for the increase in stereoregularity. A propagation mechanism is also proposed.  相似文献   

6.
Monomer-isomerization polymerization of cis-2-butene with four types of TiCl3 in combination with alkylaluminum compounds was investigated. The catalytic activities for monomer-isomerization polymerization were found to be influenced by the type of TiCl3 employed: systems containing hydrogen-activated-TiCl3 and Solvay-TiCl3 in combination with R3Al (R = C2H5 and i-C4H9) showed high catalytic activity for both isomerization and polymerization, whereas (C2H5)2AlCl in combination with any type of TiCl3 did not induce the monomer-isomerization polymerization. The addition effect of NiCl2 to the TiCl3? (C2H5)3Al catalyst was examined. Catalytic activities for both polymerization and isomerization reactions were found to depend on the amount of NiCl2 added.  相似文献   

7.
8.
Several α-olefins containing the trifluoromethyl group were prepared and characterized. 4,4,4-Trifluoro-1-butene, 3-trifluoromethyl-1-butene, 5,5,5-trifluoro-1-pentene, and 4-trifluoromethyl-1-pentene were homopolymerized with VCl3–Al(i-Bu)3 catalyst. The trifluorobutenes gave low-melting polymers with low fluorine contents. Polymers obtained from the trifluoropentenes were soluble having moderately high intrinsic viscosities. Copolymerizations of these monomers with their nonfluorinated homologs by the same catalyst system indicated low reactivities of the fluoromonomers. Nuclear magnetic resonance spectra of the fluorinated and nonfluorinated monomers and their respective spectroscopic studies with the catalyst (C5H5)2TiCl2–Al(CH3)3 indicated an electron deficiency of the vinyl group of the fluorobutenes. This was related to the inductive effect of the trifluoromethyl group. The inductive effect of this group was absent in the fluoropentenes and the nonfluorinated monomers. The electron-deficient vinyl group of the fluorobutenes apparently did not allow these monomers to coordinate with the active sites of the catalyst. Polymerization studies of the nonfluorinated monomers, 1-butene, 3-methyl-1-butene, 1-pentane, and 4-methyl-1-pentene, with the catalyst VCl3–Al(Bu)3, were performed in the presence of compounds containing the trifluoromethyl group. Results indicated that this group did not retard the rate of polymerization of these monomers. Evidence is presented to show that a catalytic amount of benzotrifluoride enhanced the rate of polymerization of α-olefins, particularly that of sterically hindered monomers such as 3-methyl-1-butene.  相似文献   

9.
The electrical conductivity of several trialkylaluminum and alkyl-aluminum halides was investigated in dry benzene at 25°C. within the concentration range of 10?1–10?3M. The equivalent conductance of the trialkylaluminum systems decreased in the following order: Al(n-C6H13)3 > Al(n-C10H19)3 > Al(n-C4H9)3 > Al(i-C4H9)3 > Al(n-C3H7)3 > Al(C2H5)3. The conductance (1/R) of a given series was also examined and found to decrease as each alkyl group was successively replaced by a chlorine atom, thus: Al(C2H5)3 > Al(C2H5)2Cl > Al(C2H5)1.5Cl1.5 > Al(C2H5)Cl2 and Al(i-C4H9)3 > Al(i-C4H9)2Cl > Al(i-C4H9)Cl2. The ion pair dissociation constants K were calculated and show in a qualitative manner the difference between various organoaluminum systems. The relative rate of olefin polymerization was related to the conductivity of various organoaluminum–transition metal catalyst systems used. The effect of Lewis bases such as monoglyme, diglyme, triglyme, and tetraglyme on triethylaluminum indicated that the first-mentioned base forms a 1:1 type of complex as ordinary ethers do, whereas the remaining three bases utilize only two of their available oxygen atoms to coordinate with triethylaluminum. The effect of TiCl3 (in the presence of an ether) on the conductance was also determined.  相似文献   

10.
A study of the isomerization of butene-2 with TiCl3 or Al(C2H5)3–TiCl3 catalyst in n-heptane has been investigated at 60–80°C to elucidate further the mechanism of monomer-isomerization polymerization. It was found that positional and geometrical isomerizations in the presence of these catalysts occurred concurrently with activation energies of 14–16 kcal/mole. The presence of Al(C2H5)3 with TiCl3 catalyst could accelerate the initial rates of these isomerizations and initiate the monomer-isomerization polymerization of butene-2. From the results obtained, it was concluded that the isomerization of butene-2 proceeds via an intermediate σ-complex between the transition metal hydride and butene isomers.  相似文献   

11.
Polymerization at temperatures lower than the temperature of catalyst formation induces no changes in the solid phase of the catalyst formed by Al(C2H5)3 + TiCl4. In polymerizations with catalysts of this class, maximum activity is observed when the titanium component of the catalyst is trivalent. Any different behavior indicates the presence of aluminum alkyl chlorides in the liquid phase of the catalyst.  相似文献   

12.
A study of the monomer isomerization polymerization of 2-, 3-, and 4-octenes has been made with TiCl3–(C2H5)3Al catalyst at 80°C in comparison with the ordinary polymerization of 1-octene. It was found that all these octenes underwent monomer-isomerization polymerization to give high-molecular-weight homopolymer consisting exclusively of the 1-octene unit. The addition of an isomerization catalyst such as nickel acetylacetonate accelerated this polymerization. The rates of polymerization were found to decrease in the following order: 1-octene > 2-octene > 3-octene > 4-octene. These results indicate that the isomerization proceeded by a stepwise double-bond migration. It was also found that the monomer-isomerization copolymerization of 2-octene and 2-butene occurred under similar conditions and produced copolymers of both 1-olefin units.  相似文献   

13.
The influence of SeOCl2 on the polymerization of propylene by TiCl3–Al(C2H5)3, and the temperature dependence of the stereospecificity of the catalyst, TiCl3–Al(C2H5)3, have been investigated. SeOCl2 decreases the rate of polymerization and increase the stereospecificity of the catalyst, which could be explained on the basis of a decrease of the concentration of Al(C2H5)3 accompanied by a reaction between Al(C2H5)3 and SeOCl2. On the other hand, the stereospecificity of the catalyst, TiCl3–Al(C2H5)3, increases gradually with a decrease in polymerization temperature from 40 to 0°C. From these results, we conclude that SeOCl2 exerts no essential influence on the polymerization of propylene by TiCl3–Al(C2H5)3, and that the stereospecificity of the catalyst is attributed mainly to the reducing ability of the organometallic compound.  相似文献   

14.
The polymerization of 2‐butene and its copolymerization with ethylene have been investigated using four kinds of dichlorobis(β‐diketonato)titanium complexes, [ArN(CH2)3NAr]TiCl2 (Ar = 2,6‐iPr2C6H3) and typical metallocene catalysts. The obtained copolymers display lower melting points than those produced of homopolyethylene under the same polymerization conditions. 13C NMR analysis indicates that 9.3 mol‐% of 2‐butene units were incorporated into the polymer chains with Ti(BFA)2Cl2‐MAO as the catalyst system. With the trans‐2‐butene a higher copolymerization rate was observed than with cis‐2‐butene. A highly regioselective catalyst system for propene polymerization, [ArN(CH2)3NAr]TiCl2 complex using a mixture of triisobutylaluminium and Ph3CB(C6F5)4 as cocatalyst, was found to copolymerize a mixture of 1‐butene and trans‐2‐butene with ethylene up to 3.1 mol‐%. Monomer isomerization‐polymerization proceeds with typical metallocene catalysts to produce copolymers consisting of ethylene and 1‐butene.  相似文献   

15.
2-Pentene and 2-hexene were found to undergo monomer-isomerization copolymerizations with 2-butene by Al(C2H5)3–VCl3 and Al(C2H5)3–TiCl3 catalysts in the presence of nickel dimethylglyoxime or transition metal acetylacetonates to yield copolymers consisting of the respective 1-olefin units. For comparison, the copolymerizations of 1-pentene with 1-butene and 1-hexene with 1-butene by Al(C2H5)3–VCl3 catalyst were also attempted. The compositions of the copolymers obtained from these copolymerizations were determined by using the calibration curves between the compositions of the respective homopolymer mixtures and the values of D766/D1380 in the infrared spectra. The monomer reactivity ratios for the monomer-isomerization copolymerizations of 2-butene (M1) with 2-pentene and 2-hexene, in which the concentrations of both 1-olefins calculated from the observed isomer distribution were used as those in the monomer feed mixture, and for the ordinary copolymerizations of 1-butene (M1) with 1-pentene and 1-hexene by Al(C2H5)3-VCl3 catalyst were determined as follows: 2-butene (M1)/2-pentene (M2): r1 = 0.14, r2 = 0.99; 1-butene (M1)/1-pentene (M2): r1 = 0.30, r2 = 0.74; 2-butene (M1)/2-hexene (M2): r1 = 0.11, r2 = 0.62; 1-butene (M1)/1-hexene (M2): r1 = 0.13, r2 = 0.90.  相似文献   

16.
In order to clarify the correlation between polymerization and monomer isomerization in the monomer-isomerization polymerization of β-olefins, the effects of some transition metal compounds which have been known to catalyze olefin isomerizations on the polymerizations of butene-2 and pentene-2 with Al(C2H5)3–TiCl3 or Al(C2H5)3–VCl3 catalyst have been investigated. It was found that some transition metal compounds such as acetylacetonates of Fe(III), Co(II), and Cr(III) or nickel dimethylglyoxime remarkably accelerate these polymerizations with Al(C2H5)3–TiCl3 catalyst at 80°C. All the polymers from butene-2 were high molecular weight polybutene-1. With Al(C2H5)3–VCl3 catalyst, which polymerizes α-olefins but does not catalyze polymerization of β-olefins, no monomer-isomerization polymerizations of butene-2 and pentene-2 were observed. When Fe(III) acetylacetonate was added to this catalyst system, however, polymerization occurred. These results strongly indicate that two independent active centers for the olefin isomerization and the polymerizations of α-olefins were necessary for the monomer-isomerization polymerizations of β-olefins.  相似文献   

17.
Ab-initio, all electron, restricted Hartree-Fock calculations are performed on various configurations of a molecular compounds stimulating the reaction TiCl4 · Al(CH3)3+C2H4 → TiCl4 · Al(CH3)2 · C3H7. A minimal basis set of contracted gaussians has been used to describe the molecular orbitals. The results indicate that the Ti exerts weak attraction on the olefine and that a concerted motion of the olefin and the alkyl group is basic to explain the reaction mechanism.  相似文献   

18.
In order to elucidate the structure of the Ziegler-Natta polymerization center, we have carried out some kinetic studies on the polymerization of propylene with active TiCl3—Zn(C2H5)2 in the temperature range of 25–56°C. and the Zn(C2H5)2 concentration range of 4 × 10?3–8 × 10?2 mole/1., and compared the results with those obtained with active TiCl3—Al(C2H5)3. The following differences were found: (1) the activation energy of the stationary rate of polymerization is 6.5 kcal/mole with Zn(C2H5)2 and 13.8 kcal./mole with Al(C2H5)3; (2) the growth rate of the polymer chains with Zn(C2H5)2 is about times slower at 43.5°C.; and (3) the polymerization centers formed with Zn(C2H5)2 are more unstable. It can be concluded that the structure of the polymerization center with Zn(C2H5)2 is different from that with Al(C2H5)3.  相似文献   

19.
The isomerization and polymerization of propenylbenzene (PB) with various Ziegler–Natta catalyst systems have been investigated. With the TiCl3–(C2H5)3Al (Al/Ti > 2.0) catalyst at 80°C, PB polymerized to give a polymer exclusively consisting of allylbenzene (AB) unit. During the polymerization, AB, which polymerized readily with the catalyst, was produced through isomerization of PB, indicating that PB underwent monomer-isomerization polymerization. PB also polymerized with isomerization to AB in the presence of TiCl3?(C2H5)2AlCl?NiCl2 catalyst system, and a copolymer with PB and AB units was obtained. With TiCl3?C2H5AlCl2 catalyst, poly(PB) was formed via ordinary vinylene polymerization without isomerization. From these facts, it was concluded that the structure of the polymers produced from PB widely changed, depending on the catalyst systems used, which determine the rate of isomerization to AB and the polymerization reactivity of the PB and AB isomers formed.  相似文献   

20.
Supports were obtained by the interaction of C4H9MgCl with the reaction mixture of AlCl3 and CH3Si(OC2H5)3 or Si(OC2H5)4 (Mg/Al/Si = 2/1/1). With the combination of Al(C2H5)3 and methyl-p-toluate, immobilized titanium catalysts prepared by the treatment of the supports with TiCl4 and ethylbenzoate showed extraordinary high activity and stereoregularity in the polymerization of propylene.1 By the study of the reaction of AlCl3 with CH3Si(OC2H5)3, the elemental analysis and powder x-ray diffractometric measurements of the supports, it was found that the supports comprised of Cl, Mg, Al, and Si atoms, OC2H5 groups, C4H9 groups, and ethers, and that they were amorphous solids to the extent that the x-ray diffraction peak assigned to the 003 plane in MgCl2 crystals completely disappeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号