首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors propose a new algorithm, "local K" (LK), for fast evaluation of the exchange Fock matrix in case the Cholesky decomposition of the electron repulsion integrals is used. The novelty lies in the fact that rigorous upper bounds to the contribution from each occupied orbital to the exchange Fock matrix are employed. By formulating these inequalities in terms of localized orbitals, the scaling of computing the exchange Fock matrix is reduced from quartic to quadratic with only negligible prescreening overhead and strict error control. Compared to the unscreened Cholesky algorithm, the computational saving is substantial for systems of medium and large sizes. By virtue of its general formulation, the LK algorithm can be used also within the class of methods that employ auxiliary basis set expansions for representing the electron repulsion integrals.  相似文献   

2.
A method is proposed for efficient use of molecular symmetry in the evaluation of two-electron integrals. This provides a means of avoiding the recalculation of symmetry-redundant integrals, and of symmetry-blocking matrices and supermatrices without the usual time-consuming transformation procedures. Various methods for speeding up the calculation of integrals are also discussed. Integral calculation times are given for some representative molecules.  相似文献   

3.
Several parallel algorithms for Fock matrix construction are described. The algorithms calculate only the unique integrals, distribute the Fock and density matrices over the processors of a massively parallel computer, use blocking techniques to construct the distributed data structures, and use clustering techniques on each processor to maximize data reuse. Algorithms based on both square and row-blocked distributions of the Fock and density matrices are described and evaluated. Variants of the algorithms are discussed that use either triple-sort or canonical ordering of integrals, and dynamic or static task clustering schemes. The algorithms are shown to adapt to screening, with communication volume scaling down with computation costs. Modeling techniques are used to characterize algorithm performance. Given the characteristics of existing massively parallel computers, all the algorithms are shown to be highly efficient for problems of moderate size. The algorithms using the row-blocked data distribution are the most efficient. © 1996 by John Wiley & Sons, Inc.  相似文献   

4.
In this paper, the SHARK integral generation and digestion engine is described. In essence, SHARK is based on a reformulation of the popular McMurchie/Davidson approach to molecular integrals. This reformulation leads to an efficient algorithm that is driven by BLAS level 3 operations. The algorithm is particularly efficient for high angular momentum basis functions (up to L = 7 is available by default, but the algorithm is programmed for arbitrary angular momenta). SHARK features a significant number of specific programming constructs that are designed to greatly simplify the workflow in quantum chemical program development and avoid undesirable code duplication to the largest possible extent. SHARK can handle segmented, generally and partially generally contracted basis sets. It can be used to generate a host of one- and two-electron integrals over various kernels including, two-, three-, and four-index repulsion integrals, integrals over Gauge Including Atomic Orbitals (GIAOs), relativistic integrals and integrals featuring a finite nucleus model. SHARK provides routines to evaluate Fock like matrices, generate integral transformations and related tasks. SHARK is the essential engine inside the ORCA package that drives essentially all tasks that are related to integrals over basis functions in version ORCA 5.0 and higher. Since the core of SHARK is based on low-level basic linear algebra (BLAS) operations, it is expected to not only perform well on present day but also on future hardware provided that the hardware manufacturer provides a properly optimized BLAS library for matrix and vector operations. Representative timings and comparisons to the Libint library used by ORCA are reported for Intel i9 and Apple M1 max processors.  相似文献   

5.
A parallel direct self-consistent field (SCF) algorithm for distributed memory computers is described. Key features of the algorithm are its ability to achieve a load balance dynamically, its modest memory requirements per processor, and its ability to utilize the full eightfold index permutation symmetry of the two-electron integrals despite the fact that entire copies of the Fock and density matrices are not present in each processor's local memory. The algorithm is scalable and, accordingly, has the potential to function efficiently on hundreds of processors. With the algorithm described here, a calculation employing several thousand basis functions can be carried out on a distributed memory machine with 100 or more processors each with just 4 MBytes of RAM and no disk. The Fock matrix build portion of the algorithm has been implemented on a 16-node Intel iPSC/2. Results from benchmark calculations are encouraging. The algorithm shows excellent load balance when run on 4, 8, or 16 processors and displays almost ideal speed-up in going from 4 to 16 processors. Preliminary benchmark calculations have also been carried out on an Intel Paragon. © 1995 by John Wiley & Sons, Inc.  相似文献   

6.
An efficient first-principles electronic dynamics method is introduced in this article. The approach we put forth relies on incrementally constructing a time-dependent Fock∕Kohn-Sham matrix using active space density screening method that reduces the cost of computing two-electron repulsion integrals. An adaptive stepsize control algorithm is developed to optimize the efficiency of the electronic dynamics while maintaining good energy conservation. A selected set of model dipolar push-pull chromophore molecules are tested and compared with the conventional method of direct formation of the Fock∕Kohn-Sham matrix. While both methods considered herein take on identical dynamical simulation pathways for the molecules tested, the active space density screening algorithm becomes much more computationally efficient. The adaptive stepsize control algorithm, when used in conjunction with the dynamically active space method, yields a factor of ~3 speed-up in computational cost as observed in electronic dynamics using the time dependent density functional theory. The total computational cost scales nearly linear with increasing size of the molecular system.  相似文献   

7.
Methods are described that allow for an efficient evaluation of two-electron integrals over contracted Gaussian lobe functions. The improvement in computational speed is achieved by avoiding the computation of integrals that are: 1. sufficiently small on numerical reasons, 2. zero by symmetry, 3. identical to other integrals by symmetry. Examples of the effectiveness of these techniques are included. We also report the timings for a further processing of two-electron integrals in a Hartree Fock and correlation energy computation.  相似文献   

8.
A review of rigorous bounds to electron-repulsion integrals for atoms and molecules is presented. Inequalities involving direct (classical) as well as indirect (quantal) Coulomb energies are discussed. This is followed by an account of two-electron integrals in a Hartree Fock context over Gaussian basis-sets. Novel rigorous bounds to these integrals are derived and tested for some organic molecules. Connections are established with the density-based inequalities presented earlier. The present results are expected to enhance the efficiency of a generalab initio Gaussian program and yet have a sound theoretical footing.  相似文献   

9.
A suggested formalism of the local symmetricized orbitals in conjunction with the selection technique for independent blocks of integrals in an original basis is used for a construction of multielectron Hamiltonian matrix elements in the symmetry orbital basis. The optimal molecular electronic structure calculation algorithm with the Hartree–Fock–Roothaan method in the symmetricized basis was obtained as a result. The minimal number of fundamentally distinguished (symmetry attributed) elements both in original and in symmetricized basis is used in the calculations.  相似文献   

10.
The approach used to calculate the two‐electron integral by many electronic structure packages including generalized atomic and molecular electronic structure system‐UK has been designed for CPU‐based compute units. We redesigned the two‐electron compute algorithm for acceleration on a graphical processing unit (GPU). We report the acceleration strategy and illustrate it on the (ss|ss) type integrals. This strategy is general for Fortran‐based codes and uses the Accelerator compiler from Portland Group International and GPU‐based accelerators from Nvidia. The evaluation of (ss|ss) type integrals within calculations using Hartree Fock ab initio methods and density functional theory are accelerated by single and quad GPU hardware systems by factors of 43 and 153, respectively. The overall speedup for a single self consistent field cycle is at least a factor of eight times faster on a single GPU compared with that of a single CPU. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

11.
A scheme is presented for performing linear-combination-of-atomic-orbitals (LCAO ) self-consistent-field (SCF ) ab initio Hartree–Fock calculations of the electronic structure of periodic systems. The main aspects which characterize the present method are (i) a thorough discussion of both translational and local symmetry properties and the derivation of general formulas for the transformation of all the relevant monoelectronic and bielectronic terms under symmetry operators. (ii) The use of general yet powerful criteria for the truncation of infinite sums; in particular, the Coulomb electron–electron interactions are subdivided into terms corresponding to intersecting or nonintersecting charge distributions; the latter are grouped into shell contributions and the interaction is evaluated by multipolar expansions; the exchange interaction may be evaluated with great precision by retaining a relatively small number of two-electron integrals according to a truncation criterion which fully preserves its nonlocal character. (iii) The use of a procedure for performing integrals over k , as needed in the evaluation of the Fermi energy and in the reconstruction of the Fock matrix, which is particularly simple because it employs partially intersecting small spheres as integration subdomains where linear extrapolation is admitted. A comparison is finally made of our fundamental equations in the critical SCF stage with those obtainable by a recent proposal which uses Fourier transforms to express Coulomb and exchange integrals.  相似文献   

12.
In this study it is demonstrated that STO (Slater-type orbital) basis sets are particularly well suited to pseudospectral Hartree–Fock calculations. The reduction of two-electron integrals, to ones that are (at worst) equivalent to a one-electron integral over three centers, eliminates the need for slowly convergent one-center expansions. This allows all integrals to be calculated quickly and accurately in either spherical or ellipsoidal coordinates. A new variance-minimized variant of the pseudospectral method is derived and applied to a number of small closed-shell molecules. The performance of the algorithm is assessed relative to purely spectral calculations employing STO and GTO (Gaussian-type orbital) basis sets. The pseudospectral operator is used to assess the errors contained in solutions found by the purely spectral method. The suitability of a number of different de-aliasing set types is also examined. Orthogonal sets of hydrogen-like eigenfunctions were found to be optimal. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1537–1548, 1999  相似文献   

13.
An unconventional SCF method for calculations on large molecules with more than 100 basis functions is described. Storage problems which arise in conventional SCF schemes when storing more than 107 integrals are avoided by repeated calculation of integrals. The resulting increase in computational times is kept at a reasonable level by (a) improving the initial guess, (b) accelerating convergence, (c) employing a recursive construction of the Fock matrix, and (d) eliminating insignificant integrals from the calculation by a density-weighted cutoff criterion. Sample calculations show that, compared with conventional SCF calculations, computational times increase by 25%–75% depending on the basis set and the shape of the molecule.  相似文献   

14.
It is shown that a compression of two-electron integrals and their indices significantly improves efficiency of the conventional self-consistent field (SCF) algorithm for a solution of the Hartree-Fock equation by decrease the Fock matrix calculation time. The improvement is reached not only due to a reduction of the integral file size, but mainly because data compression reduces or even can eliminate a cache conflict in data transfer from the hard drive to the main computer memory. Thus, the conventional SCF algorithm with the data compression becomes very efficient and permits to carry out large-scale Hartree-Fock calculations. The largest Hartree-Fock calculations have been performed for RNA 433D structure from the PDB data bank with 6080 basis functions formed from 6-31G basis on a workstation with 1 GHz Alpha processor.  相似文献   

15.
16.
An algorithm for computing analytical gradients of the second‐order Møller–Plesset (MP2) energy using density fitting (DF) is presented. The algorithm assumes that the underlying canonical Hartree–Fock reference is obtained with the same auxiliary basis set, which we obtain by Cholesky decomposition (CD) of atomic electron repulsion integrals. CD is also used for the negative semidefinite MP2 amplitude matrix. Test calculations on the weakly interacting dimers of the S22 test set (Jure?ka et al., Phys. Chem. Chem. Phys. 2006, 8, 1985) show that the geometry errors due to the auxiliary basis set are negligible. With double‐zeta basis sets, the error due to the DF approximation in intermolecular bond lengths is better than 0.1 pm. The computational time is typically reduced by a factor of 6–7. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
An analysis of Dunlap's robust fitting approach reveals that the resulting two‐electron integral matrix is not manifestly positive semidefinite when local fitting domains or non‐Coulomb fitting metrics are used. We present a highly local approximate method for evaluating four‐center two‐electron integrals based on the resolution‐of‐the‐identity (RI) approximation and apply it to the construction of the Coulomb and exchange contributions to the Fock matrix. In this pair‐atomic resolution‐of‐the‐identity (PARI) approach, atomic‐orbital (AO) products are expanded in auxiliary functions centered on the two atoms associated with each product. Numerical tests indicate that in 1% or less of all Hartree–Fock and Kohn–Sham calculations, the indefinite integral matrix causes nonconvergence in the self‐consistent‐field iterations. In these cases, the two‐electron contribution to the total energy becomes negative, meaning that the electronic interaction is effectively attractive, and the total energy is dramatically lower than that obtained with exact integrals. In the vast majority of our test cases, however, the indefiniteness does not interfere with convergence. The total energy accuracy is comparable to that of the standard Coulomb‐metric RI method. The speed‐up compared with conventional algorithms is similar to the RI method for Coulomb contributions; exchange contributions are accelerated by a factor of up to eight with a triple‐zeta quality basis set. A positive semidefinite integral matrix is recovered within PARI by introducing local auxiliary basis functions spanning the full AO product space, as may be achieved by using Cholesky‐decomposition techniques. Local completion, however, slows down the algorithm to a level comparable with or below conventional calculations. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The Hartree–Fock equations are derived in the MO -LCAO approximation for the case when the integrals (except overlap integrals) over the atomic orbitals are charge-dependent. It is shown that inclusion of the overlap matrix in the iterative procedure gives equations which are too complicated for the simple model under consideration. The approach is applied to the VESCF method in the PPP scheme.  相似文献   

19.
A very efficient and exact method for calculating the long-range effects in polymers is reported. The method is based on the multipole expansion within the Fock operator, and exact summation up to infinity is carried out. Only a small number of one-electron integrals have to be considered, while in the traditional approach one has to compute a large number of two-electron integrals. Results on LiH model polymer have been obtained with a remarkable accuracy within a negligible computing time.  相似文献   

20.
The general methods of deriving the extended Hartree–Fock equations are described. The rules for going over from the energy expression in the ordinary method of calculation to that in an extended one are reformulated and illustrated. The extended Hartree—Fock equations for berylliumlike atomic systems based on the use of nonorthogonal radial orbitals are given and solved. The numerical values of overlap integrals and total energies are given and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号