首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer electrolytes which are adhesive, transparent, and stable to atmospheric moisture have been prepared by blending poly(methyl methacrylate)-g-poly(ethylene glycol) with poly(ethylene glycol)/LiCF3 SO3 complexes. The maximum ionic conductivities at room temperature were measured to be in the range of 10−4 to 10−5 s cm−1. The clarity of the sample was improved as the graft degree increased for all the samples studied. The graft degree of poly(methyl methacrylate)-g-poly(ethylene glycol) was found to be important for the compatibility between the poly(methyl methacrylate) segments in poly(methyl methacrylate)-g-poly(ethylene glycol) and the added poly(ethylene glycol), and consequently, for the ion conductivity of the polymer electrolyte. These properties make them promising candidates for polymer electrolytes in electrochromic devices. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Highly conductive solid polymeric electrolytes based upon low molecular weight poly(ethylene glycol) and ethylene oxide/propylene oxide copolymers blended with up to 50% by volume of poly(methyl methacrylate) have been synthesized using LiCF3SO3 (25:1 ether oxygen to cation ratio). Room-temperature ionic conductivities were measured to be in the range 10?4 to 10?5 S/cm for poly(methyl methacrylate) concentrations up to 30% by volume. In some cases, the addition of the poly(methyl methacrylate) enhanced the conductivity. All of the electrolytes studied were either amorphous or crystallized below 0°C. The variation of conductivity with temperature and polymer composition was measured and the results were analyzed in terms of effective medium theory and semiempirical considerations. Ionic transport is coupled to the structural relaxation of the polymer segments. At lower temperatures activated processes were required. Both charge carrier mobility and charge concentration were found to contribute to conduction. The effective medium theory quantitatively describes conductivities of amorphous heterogenous systems of limited miscibility (microphase separation) quite well. For miscible or partially crystalline systems other effects not incorporated in this theory play an important role, and conductivities are measured to be higher than theoretically predicted. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
We have prepared polymer electrolytes composed of poly(methyl methacrylate-co-lithium methacrylate) ionomer (P(MMA-co-LiMA)), low molecular weight PEG, and LiCF3SO3 salt. The ion groups in P(MMA-co-LiMA) could enhance the miscibility between the MMA units and PEG in the polymer electrolytes. This miscibility enhancement made the pathway of ion transport less tortuous, and consequently led to the increase in ion conductivity. The maximum ambient ion conductivities in these systems were measured to be in the range of 10−4–10−5 S/cm. The polymer electrolytes became transparent at the higher ion content owing to the enhanced miscibility. The mechanical stability of the polymer electrolytes was also improved through the introduction of ion groups into the PMMA. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 991–997, 1998  相似文献   

4.
In this research, thin, soft and flexible free standing films can be obtained from poly (methyl methacrylate) (PMMA)/50% epoxidised natural rubber (ENR 50)/lithium triflate (LiCF3SO3) blends. However, phase separation is observed on the surface of the films which indicates that the blending is not homogeneous. The blend became more homogeneous when ethylene carbonate (EC) plasticizer is introduced into the blend system. However, the anti-plasticization effect of EC on ENR 50 occurs at lower concentration of EC at which the rubber became coagulated due to immiscibility of the rubber with EC plasticizer during solution casting. These ENR 50 coagulates can be observed as large solid structures in the Field Emission Scanning Electron Microscope (FESEM) micrographs of the EC-plasticized rubber-based electrolytes. The presence of these coagulates, hinder the migration of lithium ions in the system and also trap the lithium ions within the coil. This in turn reduced the number of free lithium ions that contribute to the ionic conduction. As a result, the conductivity of the un-plasticized PMMA/ENR 50/LiCF3SO3 film dropped drastically by two orders of magnitude.  相似文献   

5.
This study investigated and discovered a new miscible ternary blend system comprising three amorphous polymers: poly(vinyl acetate) (PVAc), poly(vinyl p‐phenol) (PVPh), and poly(methyl methacrylate) (PMMA) using thermal analysis and optical and scanning electron microscopies. The ternary compositions are largely miscible except for a small region of borderline ternary miscibility near the side, where the binary blends of PVAc/PMMA are originally of a borderline miscibility with broad Tg. In addition to the discovering miscibility in a new ternary blend, another objective of this study was to investigate whether the introduction of a third polymer component (PVPh) with hydrogen bonding capacity might disrupt or enhance the metastable miscibility between PVAc and PMMA. The PVPh component does not seem to exert any “bridging effect” to bring the mixture of PVAc and PMMA to a better state of miscibility; neither does the Δχ effect seem to disrupt the borderline miscible PVAc/PMMA blend into a phase‐separated system by introducing PVPh. Apparently, the ternary is able to remain in as a miscible state as the binary systems owing to the fact that PVPh is capable of maintaining roughly equal H‐bonding interactions with either PVAc or PMMA in the ternary mixtures to maintain balanced interactions among the ternary mixtures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1147–1160, 2006  相似文献   

6.
The thermal and electrochemical characteristics of plasticized polymer electrolytes composed of poly(acrylonitrile-co-methyl methacrylate) [P(AN-co-MMA)], a plasticizer [a mixture of ethylene carbonate and propylene carbonate], and LiCF3SO3 were investigated. The incorporation of a MMA unit into the matrix polymer was effective for an increase in the compatibility between the matrix polymer and the plasticizer. The comparative investigation of the interfacial resistance of the Li/polymer electrolyte/Li cell for the PAN-based and the P(AN-co-MMA)-based polymer electrolytes showed that the MMA unit could improve the stability of the polymer electrolyte toward the Li electrode, which is probably due to the enhanced adhesion of the polymer electrolyte to the Li electrode. Received: 14 July 1997 / Accepted: 14 May 1998  相似文献   

7.
In the present work, a poly(ionic liquid) (PIL), poly(triphenyl-4-vinylbenzylphosphonium chloride) and a series of its random copolymers with nonionic hydrophobic poly(methyl methacrylate) (PMMA) are synthesized by conventional free radical polymerization (CFRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The understanding of some fundamental aspects about ion transport and relaxation mechanism in PIL and PIL copolymers are investigated using dielectric spectroscopy via several theoretical models. The influence of copolymer compositions, physical blending of neat PIL and PMMA, size of counter anions (Cl and TFSI) and variation of molecular weights on thermal stability, moisture sensitivity, ionic transport and relaxation properties are also studied. An enhancement of thermal stability and ionic transport property of the PIL copolymer is observed compared to those of the physically mixed blend of two homopolymers with same compositions. The incorporation of hydrophobic PMMA segment definitely decreases the moisture content in PIL copolymers than the PIL itself. In all these PIL- based systems, the temperature dependence of ionic conductivity, relaxation time and ion diffusivity are well described by Vogel-Tammann-Fulcher model. The studies of some fundamental properties of these new PIL copolymers with less moisture sensitivity may help in using them as potential polymer electrolytes in energy storage devices.  相似文献   

8.
The plasticization of stereocomplex polylactide (scPLA) with poly(propylene glycol) (PPG) is described. The poly(L-lactide) (PLLA), poly(D-lactide) (PDLA) and PPG were completely blended in chloroform before film casting to prepare scPLA/PPG blend films. The PLLA/PDLA ratio was fixed at 50/50 (w/w). The PPG blending enhanced the stereocomplex formation of the scPLA films. The stereocomplex crystallinities of the scPLA films increased as the PPG blend ratio increased, the PPG molecular weight decreased and the PDLA molecular weight decreased. The PPG blending significantly decreased the T g and film transparency, and improved the elongation at break of the scPLA films. The results indicated that the PPG blending had an effect on the stereocomplexation and it improved the flexibility of the scPLA films.  相似文献   

9.
Review on gel polymer electrolytes for lithium batteries   总被引:1,自引:0,他引:1  
This paper reviews the state-of-art of polymer electrolytes in view of their electrochemical and physical properties for the applications in lithium batteries. This review mainly encompasses on five polymer hosts namely poly(ethylene oxide) (PEO), poly(acrylonitrile) (PAN), poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVdF) and poly(vinylidene fluoride-hexafluoro propylene) (PVdF-HFP) as electrolytes. Also the ionic conductivity, morphology, porosity and cycling behavior of PVdF-HFP membranes prepared by phase inversion technique with different non-solvents have been presented. The cycling behavior of LiMn2O4/polymer electrolyte (PE)/Li cells is also described.  相似文献   

10.
Poly(ethylene oxide) (MW 600,000)/poly(2vinylpyridine) (MW 200,000)/LiClO4 blends have been prepared by the solution blending process. The ionic conductivities of the blends containing lower weight fractions (15, 17.5, 20 and 22.5%) of poly (2vinylpyridine) initially increases as the salt content is increased, reaches a maximum at an ethylene oxide/Li+ mole ratio of 10 and decreases as the salt content is further increased. Blends, which have higher weight fractions of poly(2vinylpyridine) (25 and 35%) display different electric behavior, i.e., the ionic conductivity continously increased as the salt content is increased to an ethylene oxide/Li+ mole ratio of 2. Thermal, 7Li solidstate NMR and semiempirical MNDO molecular orbital studies indicate that this contrasting behavior may be explained by the structure and ratios of the solvates (mixed solvate or homosolvate) of LiClO4 present in the blends. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
In this study, we successfully report an intimate ternary blend system of polycarbonate (PC)/poly(methyl methacrylate) (PMMA)/poly(vinyl acetate) (PVAc) obtained by the simultaneous coalescence of the three guest polymers from their common γ‐cyclodextrin (γ‐CD) inclusion compound (IC). The thermal transitions and the homogeneity of the coalesced ternary blend were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The observation of a single, common glass transition strongly suggests the presence of a homogeneous amorphous phase in the coalesced ternary polymer blend. This was further substantiated by solid‐state 13C NMR observation of the T(1H)s for each of the blend components. For comparison, ternary blends of PC/PMMA/PVAc were also prepared by traditional coprecipitation and solution casting methods. TGA data showed a thermal stability for the coalesced ternary blend that was improved over the coprecipitated blend, which was phase‐segregated. The presence of possible interactions between the three polymer components was investigated by infrared spectroscopy (FTIR). The analysis indicates that the ternary blend of these polymers achieved by coalescence from their common γ‐CD–IC results in a homogeneous polymer blend, possibly with improved properties, whereas coprecipitation and solution cast methods produced phase separated polymer blends. It was also found that control of the component polymer molar ratios plays a key role in the miscibility of their coalesced ternary blends. Coalescence of two or more normally immiscible polymers from their common CD–ICs appears to be a general method for obtaining well‐mixed, intimate blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4182–4194, 2004  相似文献   

12.
We employed high‐resolution 13C cross‐polarization/magic‐angle‐spinning/dipolar‐decoupling NMR spectroscopy to investigate the miscibility and phase behavior of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends. The spin–lattice relaxation times of protons in both the laboratory and rotating frames [T1(H) and T(H), respectively] were indirectly measured through 13C resonances. The T1(H) results indicate that the blends are homogeneous, at least on a scale of 200–300 Å, confirming the miscibility of the system from a differential scanning calorimetry study in terms of the replacement of the glass‐transition‐temperature feature. The single decay and composition‐dependent T(H) values for each blend further demonstrate that the spin diffusion among all protons in the blends averages out the whole relaxation process; therefore, the blends are homogeneous on a scale of 18–20 Å. The microcrystallinity of PVC disappears upon blending with PMMA, indicating intimate mixing of the two polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2390–2396, 2001  相似文献   

13.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

14.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

15.
The present study focuses on the preparation and characterization of poly(vinyl alcohol)/poly(vinylidene fluoride) blend polymer electrolyte doped with lithium triflate (LiCF3SO3). Interaction of lithium triflate with the host polymer in the solid polymer electrolyte was studied using X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. It was found that 15% salt doped polymer electrolyte possesses the highest ionic conductivity (2.7 × 10–3 S/cm) at 303 K, the higher thermal stability at 175°C. Linear sweep voltammetry results revealed that the film is electrochemically stable up to 3.4 V.  相似文献   

16.
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
A series of copolymers of predominantly poly(ethylene oxide) (PEO) with biphenyl (BP) units in the backbone were synthesized. The solid polymer electrolytes (SPEs) were prepared from these copolymers (BP-PEG) employing lithium perchlolate (LiClO4) as a lithium salt and their ionic conductivities were investigated to exploit the structure–ionic conductivity relationships as a function of chain length ratio between the flexible PEO chains and rigid BP units. The ionic conductivity increases with increasing PEO length in BP-PEG. The salt concentrations in BP-PEG/LiClO4 complexes were also changed and the results show that maximum conductivity is obtained at [EO]/[Li+]≈8. The reasons for these findings are discussed in terms of the number of charge carriers and the mobility of the polymer chain.  相似文献   

18.
Effects of a strong‐interacting amorphous polymer, poly(4‐vinyl phenol) (PVPh), and an alkali metal salt, lithium perchlorate (LiClO4), on the amorphous and crystalline domains in poly(ethylene oxide) (PEO) were probed by differential scanning calorimetry (DSC), optical microscopy (OM), and Fourier transform infrared spectroscopy (FTIR). Addition of lithium perchlorate (LiClO4, up to 10% of the total mass) led to enhanced Tg's, but did not disturb the miscibility state in the amorphous phase of PEO/PVPh blends, where the salt in the form of lithium cation and ClO anion was well dispersed in the matrix. Competitive interactions between PEO, PVPh, and Li+ and ClO ions were evidenced by the elevation of glass transition temperatures and shifting of IR peaks observed for LiClO4‐doped PEO/PVPh blend system. However, the doping distinctly influenced the crystalline domains of LiClO4‐doped PEO or LiClO4‐doped PEO/PVPh blend system. LiClO4 doping in PEO exerted significant retardation on PEO crystal growth. The growth rates for LiClO4‐doped PEO were order‐of‐magnitude slower than those for the salt‐free neat PEO. Dramatic changes in spherulitic patterns were also seen, in that feather‐like dendritic spherulites are resulted, indicating strong interactions. Introduction of both miscible amorphous PVPh polymer and LiClO4 salt in PEO can potentially be a new approach of designing PEO as matrix materials for electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3357–3368, 2006  相似文献   

19.
From solid state NMR spectra, a lower shielding of poly(ethylene oxide) (PEO) protons, in contrast to higher shielding of PEO carbons, has been found for PEO/hydroxybenzene and PEO/LiCF3SO3 complexes in comparison with neat PEO. The same PEO chemical shifts were found both for crystalline and amorphous phase of PEO/LiCF3SO3 polymer electrolyte, confirming the same interaction in both phases. Measurements of 2D 1H CRAMPS exchange NMR spectra have been used to characterize proton distances in complexes of PEO and benzene derivatives. A close contact (∼ 0.3 nm) between aromatic and PEO protons was detected in some cases. From the measurements of the cross polarization 1H → 13C, using Lee-Goldburg irradiation of 1H nuclei, the distance between LiCF3SO3 carbon and the nearest PEO protons in the PEO/LiCF3SO3 complex was determined.  相似文献   

20.
Summary: Results obtained recently on polymer electrolytes poly(ethylene oxide) (PEO)/LiCF3SO3 and poly(2-ethyl-2-oxazoline) (POZ)/AgCF3SO3 by a combination of solid-state 13C and 1H NMR spectroscopy and DFT quantum-chemical calculations are discussed. Essentially the same local structure was found for the amorphous and crystalline phases of semicrystalline PEO/LiCF3SO3 polymer electrolyte. The amorphous POZ/AgCF3SO3 complex has a defined stoichiometry with two POZ monomeric units per one AgCF3SO3. A close contact between the metal salt and polymer was determined for both investigated systems from the Lee-Goldburg cross-polarization 1H → 13C dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号