首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dielectric permittivity and loss of diglycidyl ether of bisphenol-A (DGEBA) cured with greater than and less than the stoichiometric amounts of diaminodiphenyl methane (DDM) have been measured over a temperature range 77–350 K prior to curing and gelation, after curing at about 340 K and further aging for a predetermined period. The height of the γ-relaxation peak monotonically decreases during the post-cure period and becomes masked by the contributions from the β-relaxation peak, whose height, in turn, first increases on postcuring to a same maximum value for both nonstoichiometric thermosets and then decreases. This decrease is attributed to physical aging effects. The β-relaxation peak shifts towards higher temperature on postcuring. Comparison between the changes in the dielectric properties of the saturated and starved thermosets show that while the γ-relaxation process may be attributed to the motion of the epoxide dipolar groups of the unreacted DGEBA, the β-relaxation process is not attributable entirely to the motion of ? OH groups and of the unreacted amines in the thermoset. Explanations involving the chain and network packing in the structure of a thermoset are necessary for the observed behavior of the β-relaxation process in amine saturated and starved thermosets.  相似文献   

2.
Changes in the dielectric permittivity ε′ and loss epsiv;″ during the curing of DGEBA catalyzed by 10 mole % dimethylbenzylamine have been studied from sol to gel to glass formation regions at different temperatures from 323 to 390 K. The ε′ monotonically decreases with time of cure, and ε″ initially decreases by several orders of magnitude and then increases to reach a peak value before finally decreasing to a low value characteristic of the glassy state. The features shift to shorter times and the peak vanishes as the curing temperature is increased. The decrease of ε″ at the initial stage of cure has been analyzed in terms of dc conductivity σ0, which follows a power law, σ0 ∝? (tg–t)x, as well as a new singularity equation, σ0 ∝? exp[–B/(t0t)] where tg, x, B, and t0 are empirical constants that vary with the curing temperature; tg is close to the time for gelation; and t0 ≥ time for vitrification. The dielectric properties of the thermoset formed after different periods of cure have been studied from 77 to 325 K. Similar studies of the thermosets formed at different temperatures have been made. Increase in the curing period decreases the heights of both the γ-and α-relaxation peaks and increases their separation, while a β-relaxation peak emerges. Isothermal curing at high temperatures decreases the height of the γ peak to a vanishingly small value and increases that of the β peak from a vanishingly small value. In both the uncured and fully cured states, there is only one sub-Tg relaxation process named γ for the uncured and β for the cured state. These results are discussed in terms of our general physical concepts of local mode motions in an amorphous matrix. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Dielectric properties measured during isothermal curing of DGEBA-based thermosets using a mixture of aromatic amines as curing agent are analyzed. The evolution of the dielectric features of thermosets during curing and after a time when their dc conductivity has reached a negligibly small value are phenomenologically similar to the dielectric features of physically and chemically stable dipolar liquids and solids observed with increasing frequency or decreasing temperature. This equivalence is a consequence of the invariance of the dynamic behavior of dielectric susceptibility with respect to either the frequency of measurement or the relaxation time of the substance and demonstrates that crosslinking of a thermoset causes its relaxation time to increase monotonically. It is shown that the stretched exponential relaxation function formalism satisfactorily describes the dielectric results and that the value of its distribution parameter initially decreases and, after gelation, reaches a constant value, which we denote γ, in the latter part of the cure. The value of the curing parameter, γ, which lies between 0.2 and 0.4, monotonically decreases with increasing curing temperature and tends to a limiting value characteristic of a thermoset at higher temperatures. This is in contrast with the increase found in the corresponding representation in the Kohlrausch-Williams-Watts parameter β with increasing temperature. The curing time dependence of the dipolar relaxation time ι has been determined and found to have the shape of an elongated S, with a well-defined point of inflexion, as ι increases during the cure, from a value characteristic of a liquid to an ultimate value characteristic of a glass.  相似文献   

4.
5.
The complex dielectric permittivity of thermosets of diglycidly ether of bisphenol-A cured with ethylene diamine has been studied during their isothermal curing at several temperatures. As cross-linking progresses, the dc conductivity decreases. At the beginning of the cure the dc conductivity can be fitted to both the scaling laws with a critical exponent of about 4 and an equation indicating approach toward a singularity. In the later stage of the cure, the change in permittivity corresponds to dipolar relaxation of an infinitely connected network, and the Argand diagram for the complex permittivity measured at a fixed frequency obtained as the curing process proceeds at 305 K is similar to that for the complex permittivity as frequency is varied for a time-invariant system which obeys a stretched exponential relaxation function with the curing parameter or exponent, γ = 0.29. Increase in the temperature of isothermal curing lowers both γ and the net decrease in the equilibrium permittivity on curing. A plot of the calculated relaxation time with curing time is sigmoidal and shifts to shorter times on increasing the curing temperature. Measurement of the dielectric properties during the cure but for different frequencies show that the various parameters for the curing kinetics are independent of the frequency of measurement. These observations confirm the development of our concepts of thermoset curing in terms of a phenomenon of negative feedback between molecular diffusion and chemical reactions.  相似文献   

6.
The dielectric permittivity and loss of diglycidyl ether of bisphenol-A-based thermosets cured with diaminodiphenyl methane and diaminodiphenyl sulfone have been measured over a temperature range 77–400 K after curing or aging for a predetermined duration. Of the two sub-Tg relaxations, the height of the γ relaxation peak monotonically decreases during both the cure and postcure periods, and the height of the β relaxation peak first increases to a maximum value and then decreases. This decrease is attributed to physical aging effects. The height of the α-relaxation peak decreases. The γ- and β-relaxation peaks become increasingly separated in temperature. A concept of accumulated equivalent curing time which is based upon known chemical kinetics has been introduced for use in both theoretical and practical aspects of the study of thermosets. It is shown that substantial curing of the sample occurs during its slow heating to the curing temperature. The use of this concept in the curing of thermosets is illustrated. A procedure for the analysis of the distribution of relaxation times from a set of results limited in both frequency and temperature range is described. The distribution parameter is 0.20 and 0.16 for the γ and β process, respectively, and remains constant with postcuring and physical aging. The distribution parameter for the α process decreases from 0.60 to 0.36 on curing.  相似文献   

7.
Velocity and attenuation of longitudinal acoustic waves in a frequency range of 5–16 MHz have been measured during the curing of diglycidyl ether of bisphenol-A with ethylene diamine. The velocity monotonically increases and reaches a limiting value and the attenuation reaches a maximum and thereafter decreases as curing proceeds. Both kinds of data have been transformed into a complex-longitudinal-modulus formalism. The complex-plane plots of the longitudinal modulus show an arc-skewed shape at the long (curing) time end. It is fitted, for the initial phase of curing, to a stretched exponential decay function with an exponent γ = 0.22 to 0.28. These results then are considered in terms of a process with a negative feedback between molecular diffusion and chemical reactions to obtain the increase in the relaxation time with the curing time. This increase is sigmoidal. Calculations of the complex longitudinal modulus show the consistency of our formalism.  相似文献   

8.
Abstract

In this work, three epoxy resins including diglycidyl ethers of N,N′-bis(2-hydroxyethyl)pyromellitimide (DIDGE), bisphenol-A (BADGE), and polyethylene glycol (PEDGE) were isothermally cured by an amine curing agent possessing N,N′-disubstituted pyromellitimide units (denoted by DIDAM). DIDGE resin was synthesized from the reaction of N,N′-bis(2-hydroxyethyl)pyromellitimide with an excess of epichlorohydrin. Also, DIDAM curing agent was prepared from the reaction of pyromellitic dianhydride with an excess of ethylene diamine. Completion of the isothermal curing processes was approved by both Fourier transform-infrared spectroscopy and non-isothermal differential scanning calorimetry (DSC). The DSC traces showed only the phase transitions related to the thermal degradation of the resulting thermosets. According to the thermogravimetric analyses, the DIDGE/DIDAM thermoset showed higher thermal stability at temperatures above 425?°C than the other two thermosets. While BADGE/DIDAM and PEDGE/DIDAM thermosets showed about 70% weight loss in the thermal range of 400–850?°C, DIDGE/DIDAM thermoset was encountered with only about 40% weight loss. The glass transition temperatures (Tg ) of the resulting thermosets were determined using tan δ vs temperature plots obtained from dynamic mechanical thermal analysis. The Tg values of BADGE/DIDAM, DIDGE/DIDAM, and PEDGE/DIDAM thermosets were found to be 211?°C, 189?°C, and 81?°C, respectively.  相似文献   

9.
The results obtained during the isothermal curing of diglycidyl ether of bisphenol-A-based thermosets cross-linked with pure diaminodiphenyl methane and pure diaminodiphenyl sulfone and with their mixtures have been analyzed to determine how the dc conductivity changes with time during the conversion of its liquid to a gel. The complex permittivity data are first analyzed to show that ac measurements can be used to obtain the ionic conductivity over a considerable period of the curing process. The procedure allows one to obtain the dc conductivity without having data as a function of frequency. The shape of the complex plane plots of the electrical modulus are semicircles, but with small deviations that appear at long times during the curing process. The dielectric consequences of the chemical changes with time during the cross-linking of the thermoset are analogous to the frequency dependence of the complex permittivity of a liquid. The analysis shows that the dc conductivity σo of a thermoset during its cure follows a power law, σo∝ (tgt)x, where t is the curing time (t < tg). The results can also be described equally well by a new equation, σo ∝ exp[—B/(tot)], where x, tg, B, and to are empirical constants all of which vary with the temperature of the cure. tg is close to the time for gelation known from independent studies and to is close to but longer than the time for vitrification. These conclusions are discussed in terms of scaling concepts for the gelation phenomenon.  相似文献   

10.
Two thermoset systems based on maleimides and diglycidyl ether of bisphenol A (DGEBA) cured with p-aminobenzoic acid were characterized in terms of thermal and electrical behavior. Thermal characterization has been undertaken by means of thermogravimetric analysis in nitrogen atmosphere up to 600°C using simultaneous thermogravimetric/Fourier transform infrared/mass spectrometry (TG/FT-IR/MS) analysis. In the first stage of thermal degradation, the global kinetic parameters [activation energy (Ea) and preexponential factor (log A1 (s−1))] were calculated using the isoconversional method of Friedman. The energies variation as well as the shape of the differential thermal analysis curves suggests that the thermal decomposition process occurred in multiple stages. The evolved gases analysis was conducted by simultaneous TG/FT-IR/MS coupled techniques. Dielectric relaxation spectroscopy characterization was also made.  相似文献   

11.
Low-temperature relaxation behavior was investigated for a bisphenol-A and three spiroring type epoxide resins cured with aromatic and spiro-ring-type diamines. A new well-defined relaxation denoted here as the β′ relaxation was observed from 50 to 100°C for the spiro-ring-type resin systems in both mechanical and dielectric measurements. The peak height and the activation energy of the β′ relaxation were entirely independent of the degree of curing. It is concluded that the β′ relaxation is due to the motion of p-phenylene group adjacent to the spiro ring. The β′ relaxation was not observed in the bisphenol-A-type resin system.  相似文献   

12.
The dielectric relaxation behavior of poly(phenylene sulfide), PPS, has been investigated from room temperature to 180°C. This study was undertaken to examine the mobility of the amorphous phase through the glass transition region, to determine the contribution that rigid amorphous phase material makes to the relaxation process. Semicrystalline samples contain a fraction of the rigid amorphous phase, which was determined from the heat capacity increment at the glass transition, using degree of crystallinity determined from x-ray scattering. In the dielectric experiment, we measured the temperature and frequency dependence of the real and imaginary parts of the dielectric function. ε″ vs. ε′ was used to determine the dielectric relaxation intensity, δε = εs–ε∞, at temperatures above the glass transition. For amorphous PPS, δε decreases as temperature increases, while for all semicrystalline PPS, δε increases with temperature. The ratio of semicrystalline intensity to amorphous intensity determines the total fraction of dipoles which are already relaxed at a given temperature. Results indicate that more and more rigid amorphous phase material relaxes as the temperature is increased. This provides the first evidence that rigid amorphous phase material in PPS contains chains that possess different levels of molecular mobility. Finally, to the temperature of the loss peak maximum, at a given frequency, we assign the value of the dielectric Tg. For both melt and cold crystallization, the dielectric Tg systematically decreases as the crystallization temperature increases, and as the fraction of rigid amorphous phase decreases.  相似文献   

13.
Solid state 1H NMR line‐shape analysis and (double quantum) DQ 1H NMR experiments have been used to investigate the segmental and polymer chain dynamics as a function of temperature for a series of thermosetting epoxy resins produced using different diamine curing agents. In these thermosets, chemical crosslinks introduce topological constraints leading to residual stresses during curing. Materials containing a unique ferrocene‐based diamine (FcDA) curing agent were evaluated to address the role of the ferrocene fluxional process on the atomic‐level polymer dynamics. At temperatures above the glass transition temperature (Tg), the DQ 1H NMR experiments provided a measure of the relative effective crosslink and entanglement densities for these materials and revealed significant polymer chain dynamic heterogeneity in the FcDA‐cured thermosets. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1143–1156  相似文献   

14.
Storage E′ and loss E″ relaxation moduli are reported as functions of frequency for poly(cyclohexyl acrylate) (PCA) at several temperatures. The possibility that these results, in conjunction with the dipolar correlation coefficient, can be used to predict the frequency dependence of the real ε and loss ε″ and the components of the complex dielectric permittivity ε* of PCA is studied. A relation between ε* and the complex relaxation modulus E* is obtained by assuming that the lag of the rotating dipoles in the electric field is caused by both dielectric and mechanical friction. The values of ε* obtained from mechanical results by means of this expression are very close to those obtained from other relations based on the assumption that the lag of the dipoles is caused exclusively by mechanical friction. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
A new series of monoepoxide terminated controlled epoxy networks (CENs) and a corresponding soluble fraction polymer (SFP) were prepared to further investigate the effects of chain termination on epoxy thermoset structure‐property relationships. CENs having an initial molecular weight between crosslinks (Mc,i) of ~3000 g/mol using phenylglycidyl ether (PGE) as the chain terminator have thermal and mechanical properties consistent with previously studied monophenol terminated CENs. Glass transition temperature (Tg) decreases monotonically with PGE concentration (ε), whereas fracture toughness decreases sharply at a critical PGE concentration (εc). A PGE terminated SFP was prepared corresponding to the soluble fraction expected for the CEN composition at εc. The SFP behaves as a weak antiplasticizer in these epoxy thermosets; Tg is reduced and follows the inverse rule of mixtures, and fracture toughness is slightly reduced. By difference it is inferred that most of the deterioration of epoxy thermoset properties resulting from incorporation of chain terminators above εc is a result of the presence of nonelastically active pendant chains and by the increase in Mc. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 72–79, 2009  相似文献   

16.
Dielectric measurements on poly(vinylidene fluoride) at higher temperatures result in anomalously large values of ε′ and ε″ at lower frequencies. When a static field is applied, a drastic decrease of ε′ and ε″ occurs. The effects of a static field can be summarized as follows: (1) the field effect upon ε′and ε″ is more significant at lower frequencies; (2) with increasing field strength, the rate of decrease of ε′and ε″ with time becomes greater and the ultimate values are smaller; (3) when the field is removed, ε′and ε″ recover but the ultimate recovery is incomplete; (4) the field effect depends strongly on temperature. Such behavior seems to be attributable to the displacement of ionic impurities and to their electrolysis. These results provided a method to remove the contribution of ionic impurities to ε′and ε″ and to measure the relaxation process due only to dipoles of a polymer. The application of this method revealed the dielectric high temperature absorption which had been masked by the ionic conduction in poly(vinyl fluoride).  相似文献   

17.
Three aromatic diamine‐based, phosphinated benzoxazines ( 7–9 ) were prepared from three typical aromatic diamines—4,4′‐diamino diphenyl methane ( 1 ), 4,4′‐diamino diphenyl sulfone ( 2 ), and 4,4′‐diamino diphenyl ether ( 3 ) by a one‐pot procedure. To clarify the reaction mechanism, a two‐pot procedure was applied, in which the reaction intermediates ( 4–6 ) were isolated for characterization. The structures of intermediates and benzoxazines were confirmed by high resolution mass, IR, and 1D and 2D‐NMR spectra. In addition to self‐polymerization, ( 7–9 ) were copolymerized with cresol novolac epoxy (CNE). After curing, the homopolymers of P( 7–9 ) are brittle while the copolymers of ( 7–9 )/CNE are tough. Dynamic mechanical analysis shows the Tgs of ( 7–9 )/CNE copolymers are 187, 190, and 171 °C, respectively. Thermal mechanical analysis shows the CTEs of ( 7–9 )/CNE copolymers are 46, 38, and 46 ppm, respectively. All the ( 7–9 )/CNE copolymers belong to an UL‐94 V‐0 grade, demonstrating good flame retardancy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
The reinforcing strategies of epoxy thermosets rely on the control of the phase separation between the additive and the growing thermoset. With standard additives, such as reactive liquid rubbers, the length scale of the resulting domains is the micrometer. Here, we present a route that enable a control of the morphology down to the nanometer scale. This strategy is based upon the self-assembly process of blends of epoxy and SBM triblock copolymers, namely Poly(Styrene-b-1,4 Butadiene-b-Methyl methacrylate). It relies on the respective affinities between the epoxy precursors and each of the three blocks. Liquid epoxy has a strong affinity for PMMA, whilst it is not miscible with polystyrene nor polybutadiene at standard processing temperatures. Thus, within the reactive system, microphase separation leads to a regular network of S-B domains. This nanostructure is governed by thermodynamics. The size and geometry of the dispersed domains are controlled by the concentration and the ratio between blocks lengths. The domain size is of the order of magnitude of the chain length, ranging typically from 10 to 30 nanometers. What controls the blend's morphology throughout the curing process of the thermoset was one topic on which we focused our interest. Nanostructured thermosets have been obtained. These supramolecular architectures yield significant toughness improvements while preserving the transparency of the material. The reinforcing mechanisms are not yet fully understood : it is intriguing to induce significant toughening with elastomer domains smaller than 30 nanometers in diameter. Besides being efficient epoxy tougheners, SBM can broaden the scope of applications of thermosets due to specific rheological behaviors. Thanks to the self assembly process taking place in the blend of the SBM block copolymers with the epoxy thermosets precursors, the reactive solvent can be turned into a reactive gel or solid (before curing). This physical gelation is induced by the microphase separation and is thus thermoreversible. At relatively moderate loadings of block copolymers the reactive blend behaves like a thermoplastic material, with adjustable modulus and tackiness. These results evidence that SBM block copolymers open a broad area for designing new class of thermoset materials.  相似文献   

19.
The physical aging of an epoxy resin based on diglycidyl ether of bisphenol-A cured by a hardener derived from phthalic anhydride has been studied by differential scanning calorimetry. The isothermal curing of the epoxy resin was carried out in one step at 130°C for 8 h, obtaining a fully cured resin whose glass transition was at 98.9°C. Samples were aged at temperatures between 50 and 100°C for periods of time from 15 min to a maximum of 1680 h. The extent of physical aging has been measured by the area of the endothermic peak which appears below and within the glass transition region. The enthalpy relaxation was found to increase gradually with aging time to a limiting value where structural equilibrium is reached. However, this structural equilibrium was reached experimentally only at an aging temperature of Tg-10°C. The kinetics of enthalpy relaxation was analysed in terms of the effective relaxation time τeff. The rate of relaxation of the system given by 1/τeff decreases as the system approaches equilibrium, as the enthalpy relaxation tends to its limiting value. Single phenomenological approaches were applied to enthalpy relaxation data. Assuming a separate dependence of temperature and structure on τ, three characteristic parameters of the enthalpic relaxation process were obtained (In A = ?333, EH = 1020 kJ/mol, C = 2.1 g/J). Comparisons with experimental data show some discrepancies at aging temperatures of 50 and 60°C, where sub-Tg peaks appears. These discrepancies probably arise from the fact that the model assumes a single relaxation time. A better fit to aging data was obtained when a Williams-Watts function was applied. The values of the nonexponential parameter β were slightly dependent on temperature, and the characteristic time was found to decrease with temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号