首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Appearance energies for [C7H7]+ and [C6H5]+ fragment ions obtained from methylphenol isomers were measured at the threshold using the electron impact technique. Different processes for the formation of the ions are suggested and discussed. Metastable peaks were detected and the kinetic energies released were determined. The results indicate that [C7H7]+ ions are formed from metbylpbenois with both benzyl and tropylium structures, whereas [C6H5]+ ions are formed with the phenyl structure at the detected thresholds. Kinetic energies released on fragmentation of reactive [ C7H7]+ and [C6H5]+ ions were used as a probe for the structure of the ions at 70 eV.  相似文献   

2.
Collisional activation spectra of [C8H8]+·, [C8H8]2+, [C6H6]+· and [C6H5]+ ions from fifteen different sources are reported. Decomposing [C8H8]+· ions of ten of these precursors isomerise to a mixture of mainly the cyclooctatetraene and, to a smaller extent, the styrene structure. Three additional structures are observed with [C8H8]+· ions from the remaining precursors. [C8H8]2+., [C8H8]+·, [C6H6]+· and [C6H5]+· ions mostly decompose from common structures although some exceptions are reported.  相似文献   

3.
The structures of gas-phase [C4H6O] radical cations and their daughter ions of composition [C2H2O] and [C3H6] were investigated by using collisionally activated dissociation, metastable ion measurement, kinetic energy release and collisional ionization tandem mass spectrometric techniques. Electron ionization (70 eV) of ethoxyacetylene, methyl vinyl ketone, crotonaldehyde and 1-methoxyallene yields stable [C4H6O] ions, whereas the cyclic C4H6O compounds undergo ring opening to stable distonic ions. The structures of [C2H3O] ions produced by 70-eV ionization of several C4H6O compounds are identical with that of the ketene radical cation. The [C3H6] ions generated from crotonaldehyde, methacrylaldehyde, and cyclopropanecarboxaldehyde have structures similar to that of the propene radical cations, whereas those ions generated from the remainder of the [C4H6O] ions studied here produced a mixed population of cyclopropane and propene radical cations.  相似文献   

4.
The appearance energies for the [C7H7]+ and [C8H9]+ fragment ions produced in the fragmentation of the C-1? C-4 monosubstituted alkyl benzenes have been measured by photon impact. The mean heat of formation calculated for [C7H7]+ is 205.3 ± 1.9 kcal mol?1 which is consistent with a threshold tropylium structure. For [C8H9]+ the mean heat of formation is calculated to be 199.2 ± 1.3 kcal mol?1 which can be equated with either a methyl tropylium or α-phenylethyl structure at threshold. Some evidence is provided for the existence of the α-phenylethyl ion.  相似文献   

5.
From the mass-analysed ion kinetic energy spectra of labelled ions, kinetic energy releases and thermodynamic data, it is proved that protonated n-propylbenzene (1) isomerizes into protonated isopropyl benzene (2). It is also shown that the dissociation of the less energetic metastable ions of (2), leading to [iso-C3H7]+ and [C6H7]+ product ions, is preceded by H exchange. This H exchange involves two interconverting ion-neutral complexes [C6H6, iso-C3H7+] (2π) and [C6H7+, C3H6] (2α).  相似文献   

6.
The use of kinetic energy release measurements in the structural characterization of ions formed in the mass spectrometer and in the determination of fragmentation mechanisms is demonstrated. In combination with information on the mode of energy partitioning in some of these reactions this allows the following conclusions: (i) The metastable [C7H8]8˙ ions formed from toluene, cyclohepatatriene, n-butylbenzene, the three methyl anisoles, methyl tropyl ether and benzyl methyl ether all undergo loss of H˙ from a common structure. (ii) The metastable [C7H7]+ ions generated from the same sources and from benzyl bromide, benzyl alcohol, p-xylene and ethylbenzene appear to undergo loss of acetylene from both the benzylic and the tropylium structures. (iii) The metastable [C7H7OCH3]+˙ ether molecular ions undergo loss of CH3˙ by two types of mechanism, simple cleavage to give the aryloxy cation (not observed for benzyl methyl ether) and a rearrangement process which appears to lead to protonated tropone as the product. (iv) Loss of formaldehyde from the metastable [C7H7OCH3]+˙ molecular ions involves hydrogen transfer via competitive 4- and 5-membered cyclic transition states in the case of the anisoles and in the case of methyl tropyl ether, while for benzyl methyl ether, hydrogen transfer in the nonisomerized molecular ion occurs via a 4-membered cyclic transition state to yield the cycloheptatriene molecular ion.  相似文献   

7.
[C13H9S]+, [C14H11]+, [C13H11]+ and [C8H7S]+ ions with unknown structures were generated from two [C14H12S]precursor ions by fragmentation reactions that must be preceded by extensive rearrangements. Ions with the same compositions, each with several initial structures, were prepared by simple bond-breaking reactions. Metastable characteristics were compared for each of the four types of ions. It was found than in all cases fast isomerization reactions occur prior to fragmentation, so that no information about the unknown ion structures could be obtained by comparison of the observed fragmentations of metastable ions.  相似文献   

8.
Additional evidence for the rearrangement of the 1- and 3-phenylcyclobutene radical cations, their corresponding ring-opened 1,3-butadiene ions and 1,2-dihydronaphthalene radical cations to methylindenetype ions has been obtained for the decomposing ions by mass analysed ion kinetic energy spectroscopy (MIKES). The nature of the [C9H7]+ and [C10H8] daughter ions arising from the electron ionization induced fragmentation of these [C10H10] precursors has been investigated by collisionally activated dissociation (CAD), collisional ionization and ion kinetic energy spectroscopy. The [C9H7]+ produced from the various C10H10 hydrocarbons are of identical structure or an identical mixture of interconverting structures. These ions are similar in nature to the [C9H7]+ generated from indene by low energy electron ionization. The [C10H8] ions also possess a common structure, which is presumably that of the maphthalene radical cation.  相似文献   

9.
On the basis of unimolecular and collisionally activated decompositions, as well as their charge stripping behaviour, [C7H8]+˙ and [C7H8]2+ ions from a variety of precursors have been studied. In particular, structural characteristics of molecular ions of toluene, cycloheptatriene, norborna-2,5-diene and quadricyclane have been compared to those of [C7H8]+˙ and [C7H8]2+ rearrangement fragment ions obtained from n-butylbenzene, 2-phenylethanol and n-pentylbenzene. Severe interferences from [C7H7]2+˙ ion fragmentations have been observed and rationalized.  相似文献   

10.
Appearance energies for [C7H5O]+ fragment ions, formed from a variety of benzoyl compounds, have been measured by photon impact. The mean heat of formation calculated for [C7H5O]+ is 705 ± 6 kJ mol?1, which can be correlated with either a single threshold structure or a mixture of structures with similar heats of formation. Previously observed variations of ΔHf([C7H5O]+) with precursor molecule are shown to be consistent with a structure dependent kinetic shift, rather than the presence of isolated electronic states.  相似文献   

11.
Under electron impact o-phthalanilic acids show the retrosynthetic reaction previously described for other phthalamic acids. As primary amine derivatives they undergo thermal and electron impact induced water loss. Like the molecular ions of the related phthalimides, their [M? H2O] do not give [C8H6NO2]+ fragments, which are obtained from the N-cyclohexyl derivative. The structure of such fragments is investigated by collisionally activated mass analysed ion kinetic energy spectra, and compared with the [MH]+ of phthalimide, obtained by chemical ionization with CH4 or NH3 and assumed to be possible models.  相似文献   

12.
Charge stripping (collisional ionization) mass spectra are reported for isomeric [C5H8]+˙ and [C3H6]+˙ ions. The results provide the first method for adequately quantitatively determining the structures and abundances of these species when they are generated as daughter ions. Thus, loss of H2O from the molecular ions of cyclopentanol and pentanal is shown to produce mixtures of ionized penta-1,3- and -1,4-dienes. Pent-1-en-3-ol generates [penta-1,3-diene]+˙. [C3H6]+˙ ions from ionized butane, methylpropane and 2-methylpropan-1-ol are shown to have the [propene]+˙ structure, whereas [cyclopropane]+˙ is produced from ionized tetrahydrofuran, penta-1,3-diene and pent-1-yne.  相似文献   

13.
Collisional activation spectra were used to characterize isomeric ion structures for [CH5P] and [C2H7P] radical cations and [C2H6P]+ even-electron ions. Apart from ionized methylphosphane, [CH3PH2], ions of structure [CH2PH3] appear to be stable in the gas phase. Among the isomeric [C2H7P] ions stable ion structures [CH2PH2CH3] and [CH2CH2PH3]/[CH3CHPH3] are proposed as being generated by appropriate dissociative ionization reactions of alkyl phosphanes. At least three isomeric [C2H6]+ ions appear to exist, of which \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} - \mathop {\rm P}\limits^{\rm + } {\rm H = CH}_{\rm 2} $\end{document} could be identified positively.  相似文献   

14.
The ionization and [C4H7]+ appearance energies for a series of C4H7CI and C4H7Br isomers have been measured by dissociative photoionization mass spectrometry. Cationic heats of formation, based on the stationary electron convention, are derived. No threshold ion is observed with a heat of formation corresponding to the trans-1-methylallyl cation, although there is evidence for formation of the less stable cis isomer. A 298 K heat of formation of 871 kJ mol?1 is obtained for the cyclopropylcarbinyl cation, with the cyclobutyl cation having a higher value of 886 kJ mol?1. At the HF/6-31G** level, ab initio molecular orbital calculations show the 2-butenyl, isobutenyl and homoallyl cations to be stable forms of [C4H7]+, being less stable than the trans-1-methylallyl cation by 101 kJ mol?1, 159 kJ mol?1 and 164 kJ mol?1, respectively. However, threshold formation is not observed for any of these ions, the fragmentation of appropriate precursor molecules producing [C4H7]+ ions with lower energy structures.  相似文献   

15.
The collisional activation (CA) mass spectra of the two isomeric [C7H7]+ ions, benzyl and tropyl, have been reassessed. The structure-characteristic feature of their CA mass spectra, the m/z 77:74 abundance ratio, has been confirmed as 3.15 ± 0.2 for benzyl cations and lowered to 035 ± 03 for tropyl ions. Benzyl–tropyl cation mixture analyses were made and were in general agreement with earlier CA results, but still disagree with the results of ion cyclotron resonance experiments. The behavior of toluene molecular ions close to their dissociation threshold to [C7H7]+ + H˙ was examined; for metastable [C7H8]+˙ ions an approximately 55:45 benzyl:tropyl ratio was found. Observations are discussed in relation to photoionization and photoelecrron-photoionization coincidence studies, both of which predict high tropyl ion contents at low energies. However, at the lowest energies attainable in this study the benzyl content failed to fall below 50% and it is concluded that toluene molecular ions do not generate tropyl cations at their dissociation limit.  相似文献   

16.
The charge exchange mass spectra of 14 C6H12 isomers have been determined using [CS2], [COS], [Xe], [CO], [N2] and [Ar] as the major reactant ions covering the recombination energy range from ∼10.2 eV to ∼15.8 eV. From the charge exchange data breakdown graphs have been constructed expressing the energy dependence of the fragmentation of the isomeric [C6H12] molecular ions. The electron impact mass spectra are discussed in relation to these breakdown graphs and approximate internal energy distribution functions derived from photoelectron spectra.  相似文献   

17.
The principal fragmentation reactions of metastable [C3H7S]+ ions are loss of H2S and C2H4. These reactions and the preceding isomerizations of [C3H7S]+ ions with six different initial structures were studied by means of labelling with 13C or D. From the results it is concluded that the loss of H2S and C2H4 both occur at least mainly from ions with the structure [CH3CH2CH? SH]+ or from ions with the same carbon sulfur skeleton, with the exception of the ions with the initial structure [CH3CH2S? CH2]+, which partly lose C2H4 without a preceding isomerization. For all ions, more than one reaction route leads to [CH3CH2CH?SH]+. It is concluded that the loss of H2S is at least mainly a 1,3-elimination from the [CH3CH2CH?SH]+ ions. Both decomposition reactions are preceded by extensive but incomplete hydrogen exchange.  相似文献   

18.
The MIKE spectra of amines RCH2NH2 containing more than five carbon atoms exhibit m/z 44 and m/z 58 peaks. The structures of these [C2H6N]+ and [C3H8N]+ ions have been established by collisional activation spectra. The results are in agreement with the fragmentation mechanisms previously proposed.  相似文献   

19.
The mechanism of the formation of [C7H8]+ ions by hydrogen rearrangement in the molecular ions of 1-phenylpropane and 1,3-diphenylpropane has been investigated by looking at the effects of CH3O and CF3 substituents in the meta and para positions on the relative abundances of the corresponding ions and on the appearance energies. The formation of [C7H8]+ ions from 1,3-diphenylpropane is much enhanced at the expense of the formation of [C7H7]+ ions by benzylic cleavage, due to the localized activation of the migrating hydrogen atom by the γ phenyl group. A methoxy substituent in the 1,3-diphenylpropane, exerts a site-specific influence on the hydrogen rearrangement, which is much more distinct than in 1-phenylpropane and related 1-phenylalkanes, the rearrangement reaction being favoured by a meta methoxy group. The mass spectrum of 1-(3-methoxyphenyl)-3-(4-trideuteromethoxyphenyl)-propane shows that this effect is even stronger than the effect of para methoxy groups on the benzylic cleavage. From measurements of appearance potentials it is concluded that the substituent effect is not due to a stabilization of the [C7H7X]+ product ions. Whereas the [C7H7]+ ions are formed directly from molecular ions of 1-phenylpropane and 1,3-diphenylpropane, the [C7H8]+ ions arise by a two-step mechanism in which the s? complex type ion intermediate can either return to the molecular ion or fragment to [C7H8]+ by allylic bond cleavage. Obviously the formation of this s? complex type ion, is influenced by electron donating substituents in specific positions at the phenyl group. This is borne out by a calculation of the ΔHf values of the various species by thermochemical data. Thus, the relative abundances of the fragment ions are determined by an isomerization equilibrium of the molecular ions, preceding the fragmentation reaction.  相似文献   

20.
The internal energies of [C3H7]+ ions contributing to the metastable peak [C3H7]+ → [C3H5]+ + H2 are higher (by perhaps > 100 kJ mol?1) than those of the ion contributing to the threshold current in appearance energy measurements on [C3H5]+. The measured appearance energy may lead to an underestimation of the activation energy, i.e. negative ‘kinetic shift’, due to quantum, mechanical tunnelling. The distribution of energy released in the decomposition can be explained on the basis that much of the reverse activation energy and a statistical proportion of the excess energy is released as translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号