首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

2.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

3.
New compounds, Sr2Ga(HPO4)(PO4)F2 and Sr2Fe2(HPO4)(PO4)2F2, have been prepared by hydrothermal synthesis (700°C, 180 MPa, 24 h) and characterized by single-crystal X-ray diffraction. Sr2Ga(HPO4)(PO4)F2 crystallizes in the monoclinic space group P21/n with a = 8.257(1) Å, b = 7.205(1) Å, c = 13.596(2) Å, β = 108.02(1)°, V = 769.2(2) Å3 and Z = 4 and Sr2Fe2(HPO4)(PO4)2F2 in the triclinic space group P21/n with a = 8.072(1) Å, b = 8.794(1) Å, c = 8.885(1) Å, α = 102.46(1)°, β = 115.95(1)°, γ = 89.95(1)°, V = 550.6(1) Å3 and Z = 2. Structures are both based on different sheets involving corner-linkage between octahedra and tetrahedra. The sheets are linked by Sr2+ cations. Structural relationships exist between the descloizite mineral and the title compounds.  相似文献   

4.
Structures and Thermal Behaviour of Alkali Metal Dihydrogen Phosphate HF Adducts, MH2PO4 · HF (M = K, Rb, Cs), with Hydrogen Bonds of the F–H…O Type Three HF adducts of alkali metal dihydrogen phosphates, MH2PO4 · HF (M = K, Rb, Cs), have been isolated from fluoroacidic solutions of MH2PO4. KH2PO4 · HF crystallizes monoclinic: P21/c, a = 6,459(2), b = 7,572(2), c = 9,457(3) Å, β = 101,35(3)°, V = 453,5(3) Å3, Z = 4. RbH2PO4 · HF and CsH2PO4 · HF are orthorhombic: Pna21, a = 9,055(3), b = 4,635(2), c = 11,908(4) Å, V = 499,8(3) Å3, Z = 4, and Pbca, a = 7,859(3), b = 9,519(4), c = 14,744(5) Å, V = 1102,5(7) Å3, Z = 8, respectively. The crystal structures of MH2PO4 · HF contain M+ cations, H2PO4 anions and neutral HF molecules. The H2PO4 anions are connected to layers by O–H…O hydrogen bonds (2,53–2,63 Å), whereas the HF molecules are attached to the layers via very short hydrogen bonds of the F‐H…O type (2,36–2,38 Å). The thermal decomposition of the adducts proceeds in three steps. The first step corresponds to the release of mainly HF and a smaller quantity of water. In the second and third steps, water evolution caused by condensation of dihydrogen phosphate is the dominating process whereas smaller amounts of HF are also released.  相似文献   

5.
Pale rose single crystals of SrMn2(PO4)2 were obtained from a mixture of SrCl2 · 6 H2O, Mn(CH3COO)2, and (NH4)2HPO4 after thermal decomposition and finally melting at 1100 °C. The new crystal structure of strontium manganese orthophosphate [P‐1, Z = 4, a = 8.860(6) Å, b = 9.054(6) Å, c = 10.260(7) Å, α = 124.27(5)°, β = 90.23(5)°, γ = 90.26(6)°, 4220 independent reflections, R1 = 0.034, wR2 = 0.046] might be described as hexagonal close‐packing of phosphate groups. The octahedral, tetrahedral and trigonal‐bipyramidal voids within this [PO4] packing provide different positions for 8‐ and 10‐fold [SrOx] and distorted octahedral [MnO6] coordination according to a formulation Mn Mn Mn Sr (PO4)4. Single crystals of β′‐Mn3(PO4)2 (pale rose) were grown by chemical vapour transport (850 °C → 800 °C, P/I mixtures as transport agent). The unit cell of β′‐Mn3(PO4)2 [P21/c, Z = 12, a = 8.948(2) Å, b = 10.050(2) Å, c = 24.084(2) Å, β = 120.50°, 2953 independent reflections, R1 = 0.0314, wR2 = 0.095] contains 9 independent Mn2+. The reinvestigation of the crystal structure led to distinctly better agreement factors and significantly reduced standard deviations for the interatomic distances.  相似文献   

6.
Abstract

Chemical preparations, crystal structures, thermal analyses, and IR spectroscopic studies are given for two new hydrogen phosphates templated by 4-amino-2,2,6,6-tetramethylpiperidine: (C9H22N2)2·(H2PO4)·(HPO4)·(F)·H2O (I) and (C9H22N2)·(H2PO4)2(II). The structures are determined by single crystal X-ray diffraction. Both compounds crystallize in the P21/c (N°14) monoclinic space group with the unit cell parameters: a = 14.856 (1) Å, b = 14.092 (2) Å, c = 14.7166 (9) Å, β = 118.434 (7)°, V = 2709.2 (4) Å 3, and Z = 4 for (I) and a = 9.803 (2) Å, c = 0.466 (2) Å, c = 15.640 (8) Å, β = 94.990 (4), V = 1598.68 (7) Å3, and Z = 4 for (II).

The structure of I, refined to R = 0.042 and Rw = 0.067 for 6009 reflections (I ≥ 2σ (I)), exhibits infinite inorganic chains ((H2PO4)·(HPO4)·(F)·H2O)4? linked together through weak hydrogen bonds to form layers onto which the diprotonated [C9H22N2]2 + amine molecules are anchored.

The structure of II, refined to R = 0.060 and Rw = 0.086 for 1435 reflections (I ≥ 2σ (I)), consists of (H2PO4)? (100) layers between which [C9H22N2]2+ cations are inserted. A network of hydrogen bonds connects the different components. IR spectra of I and II show the characteristic bands of amine groups and phosphate anions.  相似文献   

7.
Single crystals of the first anhydrous thallium nickel phosphates were prepared by reaction of heterogeneous Tl/Ni/P alloys with oxygen. TlNi4(PO4)3 (pale‐yellow, orthorhombic, space group Cmc21, a = 6.441(2)Å, b = 16.410(4)Å, c = 9.624(2)Å, Z = 4) crystallizes with a structure closely related to that of NaNi4(PO4)3. Tl4Ni7(PO4)6 (yellow‐brown, monoclinic, space group Cm, a = 10.711(1)Å, b = 14.275(2)Å, c = 6.688(2)Å, β = 103.50(2)°, Z = 8) is isotypic with Na4Ni7(PO4)6, and Tl2Ni4(P2O7)(PO4)2 (brown, monoclinic, space group C2/c, a = 10.389(2)Å, b = 13.888(16)Å, c = 18.198(3)Å, β = 103.1(2)°, Z = 8) adopts the K2Ni4(P2O7)(PO4)2 structure. Tl2Ni4(P2O7)(PO4)2 could also be prepared in nearly single phase form by reaction of Tl2CO3, NiO, and (NH4)2HPO4.  相似文献   

8.
Mesityl‐vanadium(III)‐phenolate Complexes: Synthesis, Structure, and Reactivity Protolysis reactions of [VMes3(THF)] with ortho‐substituted phenols (2‐iso‐propyl‐(H–IPP), 2‐tert‐butyl(H–TBP), 2,4,6‐trimethylphenol (HOMes) and 2,2′biphenol (H2–Biphen) yield the partially and fully phenolate substituted complexes [VMes(OAr)2(THF)2] (OAr = IPP ( 1 ), TBP ( 2 )), [VMes2(OMes)(THF)] ( 4 ), [V(OAr)3(THF)2] (OAr = TBP ( 3 ), OMes ( 5 )), and [V2(Biphen)3(THF)4] ( 6 ). Treatment of 6 with Li2Biphen(Et2O)4 results in formation of [{Li(OEt2)}3V(Biphen)3] ( 7 ) and with MesLi complexes [{Li(THF)2}2VMes(Biphen)2] · THF ( 8 ) and [{Li(DME)}VMes2(Biphen)] ( 9 ) are formed. Reacting [VCl3(THF)3] with LiOMes in 1 : 1 to 1 : 4 ratios yields the componds [VCl3–n(OMes)n(THF)2] (n = 1 ( 5 b ), 2 ( 5 a ), 3 ( 5 )) and [{Li(DME)2}V(OMes)4] ( 5 c ), the latter showing thermochromism due to a complexation/decomplexation equilibrium of the solvated cation. The mixed ligand mesityl phenolate complexes [{Li(DME)n}{VMes2(OAr)2}] (OAr = IPP ( 10 ), TBP ( 11 ), OMes ( 12 ) (n = 2 or 3) and [{Li(DME)2}{VMes(OMes)3}] ( 15 ) are obtained by reaction of 1 , 2 , 5 a and 5 with MesLi. With [{Li(DME)2(THF)}{VMes3(IPP)}] ( 13 ) a ligand exchange product of 10 was isolated. Addition of LiOMes to [VMes3(THF)] forming [Li(THF)4][VMes3(OMes)] ( 14 ) completes the series of [Li(solv.)x][VMes4–n(OMes)n] (n = 1 to 4) complexes which have been oxidised to their corresponding neutral [VMes4–n(OMes)n] derivatives 16 to 19 by reaction with p‐chloranile. They were investigated by epr spectroscopy. The molecular structures of 1 , 3 , 5 , 5 a , 5 a – Br , 7 , 10 and 13 have been determined by X‐ray analysis. In 1 (monoclinic, C2/c, a = 29.566(3) Å, b = 14.562(2) Å, c = 15.313(1) Å, β = 100.21(1)°, Z = 8), 3 (orthorhombic, Pbcn, a = 28.119(5) Å, b = 14.549(3) Å, c = 17.784(4) Å, β = 90.00°, Z = 8), ( 5 ) (triclinic, P1, a = 8.868(1) Å, b = 14.520(3) Å, c = 14.664(3) Å, α = 111.44(1)°, β = 96.33(1)°, γ = 102.86(1)°, Z = 2), 5 a (monoclinic, P21/c, a = 20.451(2) Å, b = 8.198(1) Å, c = 15.790(2) Å, β = 103.38(1)°, Z = 4) and 5 a – Br (monoclinic, P21/c, a = 21.264(3) Å, b = 8.242(4) Å, c = 15.950(2) Å, β = 109.14(1)°, Z = 4) the vanadium atoms are coordinated trigonal bipyramidal with the THF molecules in the axial positions. The central atom in 7 (trigonal, P3c1, a = 20.500(3) Å, b = 20.500(3) Å, c = 18.658(4) Å, Z = 6) has an octahedral environment. The three Li(OEt2)+ fragments are bound bridging the biphenolate ligands. The structures of 10 (monoclinic, P21/c, a = 16.894(3) Å, b = 12.181(2) Å, c = 25.180(3) Å, β = 91.52(1)°, Z = 4) and 13 (orthorhombic, Pna21, a = 16.152(4) Å, b = 17.293(6) Å, c = 16.530(7) Å, Z = 4) are characterised by separated ions with tetrahedrally coordinated vanadate(III) anions and the lithium cations being the centres of octahedral and trigonal bipyramidal solvent environments, respectively.  相似文献   

9.
Synthesis, Structure, and Reactions of Vanadium Acid Esters VO(OR)3: Transesterification and Reaction with Oxalic Acid The reaction of tert.‐Butyl Vanadate VO(O‐tert.Bu)3 ( 1 ) with H2C2O4 in the primary alcohols ethanol and propanol results in the formation of (ROH)(RO)2OVV(C2O4)VVO(OR)2(HOR) (with R = C2H5 2 and R = C3H7 3 ). Compounds 2 and 3 are the first structurally characterized neutral, binuclear oxo‐oxalato‐complexes with pentavalent vanadium. The two vanadium atoms are connected by a bisbidentate oxalate group. The {VO6} coordination at each vanadium site is completed by a terminal oxo group, an alcohol ligand and two alcoxide groups. The binuclear molecules are connected to chains by hydrogen bonding. In the case of 2 a reversible isomorphic phase transition in the temperature range of –90 °C to –130 °C is observed. From methanolic solution the polymeric Methyl Vanadate [VO(OMe)3] ( 4 ) was obtained by transesterification. A report on the crystal structures of 1 , 2 and 3 as well as a redetermination of the structure of 4 is given. Crystal data: 1, orthorhombic, Cmc21, a = 16.61(2) Å, b = 9.274(6) Å, c = 10.784(7) Å, V = 1662(2) Å3, Z = 4, dc = 1.144 gcm–1; 2 (–90 ° C) , monoclinic, I2/a, a = 33.502(4) Å, b = 7.193(1) Å, c = 15.903(2) Å und β = 143.060(3)°, V = 2303(1) Å3, Z = 4, dc = 1.425 gcm–1; 2 (–130 ° C) , monoclinic, I2/a, a = 33.274(4) Å, b = 7.161(1) Å, c = 47.554(5) Å, β = 142.798(2)°, V = 6851(1) Å3, Z = 12, dc = 1.438 gcm–1; 3 , triklinic, P1, a = 9.017(5) Å, b = 9.754(5) Å, c = 16.359(9) Å, α = 94.87(2)°, β = 93.34(2)°, γ = 90.42(2)°, V = 1431(1) Å3, Z = 2, dc = 1.340 gcm–1; 4 , triklinic, P1, a = 8.443(2) Å, b = 8.545(2) Å, c = 9.665(2) Å, α = 103.202(5)°, β = 96.476(5)°, γ = 112.730(4)°, V = 610.2(2)Å3, Z = 4, dc = 1.742 gcm–1.  相似文献   

10.
Yellowish single crystals of acidic mercury(I) phosphate (Hg2)2(H2PO4)(PO4) were obtained at 200 °C under hydrothermal conditions in 32% HF from a starting complex of microcrystalline (Hg2)2P2O7. Refinement of single crystal data converged at a conventional residual R[F2 > 2σ(F2)] = 3.8% (C2/c, Z = 8, a = 9.597(2) Å, b = 12.673(2) Å, c = 7.976(1) Å, β = 110.91(1)°, V = 906.2(2) Å3, 1426 independent reflections > 2σ out of 4147 reflections, 66 variables). The crystal structure consists of Hg22+‐dumbbells and discrete phosphate groups H2PO4 and PO43–. The Hg22+ pairs are built of two crystallographically independent Hg atoms with a distance d(Hg1–Hg2) = 2.5240(6) Å. The oxygen coordination sphere around the mercury atoms is asymmetric with three O atoms for Hg1 and four O atoms for Hg2. The oxygen atoms belong to the different PO4 tetrahedra, which in case of H2PO4‐groups are connected by hydrogen bonding. Upon heating over 230 °C, (Hg2)2(H2PO4)(PO4) condenses to (Hg2)2P2O7, which in turn disproportionates at higher temperatures into Hg2P2O7 and elemental mercury.  相似文献   

11.
Bis(1-aminoguanidinium) sulfate monohydrate (AG2SO4 … H2O, 1), bis(1,3-diamino-guanidinium sulfate (DAG2SO4, 2), bis(1,3,5-triaminoguanidinium) sulfate dihydrate (TAG2SO4 … 2 H2O, 3) and bis(azidoformamidinium) sulfate (AF2SO4, 5) were synthesized and characterized by multinuclear NMR, IR, and Raman spectroscopy and elemental analysis. In the synthesis of 3, double protonated triaminoguanidinium sulfate (HTAGSO4, 4) was obtained as a byproduct. The molecular structures of 15 in the crystalline state were determined by low-temperature single crystal X-ray diffraction. 1: orthorhombic, Pnma, a = 6.7222 (8) Å, b = 14.153 (2) Å, c = 11.637 (1) Å, V = 1107.1(2) Å3, Z = 4, ρcalc.= 1.586 g cm?3 R1 = 0.0442, wR2 = 0.1007 (all data). 2: hexagonal, P6122, a,b = 6.6907 (1) Å, c = 43.4600 (8) Å, γ= 120°, V = 1684.86 (5) Å3, Z = 6, ρcalc.= 1.634 g cm?3, R1 = 0.0321, wR2 = 0.0714 (all data). 3: monoclinic, C2/c, a = 9.6174 (8) Å, b = 22.858 (1) Å, c = 6.7746 (5) Å, β= 109.49 (1), V = 1404.0 (4) Å3, Z = 4, ρcalc.= 1.620 g cm?3, R1 = 0.0292, wR2 = 0.0781 (all data). 4: monoclini c, P21/c, a = 8.9998 (9), b = 6.3953 (6), c = 13.3148(12) Å, β= 99.679 (8), V = 755.44 (13) Å3, Z = 4, ρcalc.= 1.778 g cm?3, R1 = 0.0305, wR2 = 0.0809 (all data); 5: orthorhombic, Pbca, a = 11.3855 (9), b = 7.1032 (6), c = 12.807 (1) Å, V = 1035.74 (14) Å3, Z = 4, ρcalc.= 1.720 g cm?3, R1 = 0.0389, wR2 = 0.0862 (all data).  相似文献   

12.
The phosphorus‐sulfur ligand 1‐(methylthio)‐3‐(diphenylphosphino)‐propane (S‐P3) has been synthesized and characterized by 1H NMR and 13C NMR. Reactions of S‐P3 with [PdCl2(PhCN)2] afforded the complexes [PdCl2(S‐P3)] ( I ) and [PdCl2(S‐P3)2] ( II ), in which S‐P3 acts as a bidentate and monodentate ligand, respectively. Compound I crystallizes in monoclinic space group P21/n (No. 14) with cell dimensions: a = 8.589(3), b = 15.051(3), c = 17.100(3)Å, β = 102.91(2)°, V = 2154.7(9)Å3, Z = 4. Likewise, compound II crystallizes in monoclinic space group P21/n (No. 14) with a = 9.993(5), b = 8.613(4), c = 18.721(5)Å, β = 90.18(3)°, V = 1611.3(12)Å3, Z = 2. Compound II has a trans square planar configuration with only the P‐site of the ligand bonded to the palladium atom.  相似文献   

13.
Chemical preparations and crystal structures are described for two new bismuth salts: BiHNH4P3O10 and BiNH4(PO3)4. The first one is a new type of tripolyphosphate, while the second one, a long chain polyphosphate, is isostructural with RbNd(PO3)4 and some other MILn(PO3)4 compounds. BiHNH4P3O10 is triclinic, P1 , with a = 7.032(8), b = 7.696(4), c = 8.659(3) Å, α = 106.20(4), β = 105.86(4), γ = 82.78(4)°, Z = 2, V = 432.3 Å3, Dx = 3.694. BiNH4(PO3)4 is monoclinic, P21/n, with a = 10.925(9), b = 9.034(8), c = 10.438(9) Å, β = 106.18(4), Z = 4, V = 989.4 Å3, Dx = 3.644. The crystal structure of BiHNH4P3O10 has been solved by using 4253 independent reflexíons with a final R value of 0.056. The unit cell contains two P3O105? groups related by an inversion center while bismuth atoms in a eightfold coordination build infinite chains of edge-sharing BiO8 polyhedra running parallel to the a axis. The crystal structure of BiNH4(PO3)4 has been solved using 4330 independent reflexions with a final R value of 0.047. Infinite (PO3) chains spread along the [101] direction, alternating with isolated BiO8 polyhedra.  相似文献   

14.
Starting from the tripodal tetradentate ligands ‐(3,5‐dibromo‐2‐hydroxybenzyl)(2‐hydroxybenzyl)(2‐pyridyl)methylamine (H2L1), (3,5‐dibromo‐2‐hydroxybenzyl)(2‐hydroxy‐5‐nitrobenzyl)(2‐pyridyl)methylamine (H2L2), and (3,5‐dichloro2‐hydroxybenzyl)(2‐hydroxy‐5‐nitrobenzyl)(2‐pyridyl)methylamine (H2L3) the new isostructural dinuclear zinc compounds [Zn2(L1)2]·N(CH2CH3)3 ( 1 ), [Zn2(L2)2]·2CH3OH ( 2 ) and [Zn2(L3)2]·C4H10O ( 3 ) were synthesized. Due to their enzyme‐like trigonal bipyramidal N2O3 coordination environment of the zinc ions and the similar Zn···Zn distances the complexes can be considered to be structural models for the active sites in phospholipase C and nuclease P1. With H2L3 also the dinuclear complex [Co2(L2)2(CH3OH)]·2CH3OH·0.5C4H10O ( 4 ) could be prepared. The new compounds were isolated and characterized by single crystal X‐ray crystallography as well as infrared spectroscopy. The cobalt compound 4 was additionally characterized by UV‐Vis spectroscopy and magnetic measurements. 1 crystallizes in the monoclinic space group P21/n with a = 11.2814(2), b = 28.6154(2), c = 13.1866(3) Å, β = 96.995(1)°, V = 4225.2(2) Å3, Z = 4. 2 and 3 are monoclinic, space group C2/c with a = 23.084(5), b = 9.232(2), c = 21.849(4) Å, &β; = 96.83(3)°, V = 4623(2) Å3, Z = 4, and a = 22.7834(3), b = 9.2463(1), c = 21.6351(3) Å, &β; = 97.592(1)°, V = 4517.7(2) Å3, Z = 4, respectively. 4 crystallizes in the monoclinic space group I2/a with a = 22.4680(4), b = 20.5517(4), c = 22.8910(6) Å, &β; = 111.938(1)°, V = 9804.7(4) Å3, Z = 8. 4 shows an effective magnetic moment of 6.72 μB at 300 K which clearly indicates the presence of two cobalt(II) high spin ions with Curie‐Weiss behaviour above 80 K. At lower temperatures a decrease of the effective magnetic moment was observed.  相似文献   

15.
CuSeTeCl, CuSeTeBr, and CuSeTeI: Compounds with ordered [SeTe] Screws The hitherto unknown copper(I) chalcogen halides CuSeTeCl, CuSeTeBr and CuSeTeI have been prepared and their crystal structures were determined. The compounds of general composition CuSeTeX crystallize in the monoclinic system, space group P21/n (No. 14), Z = 4, a = 7.9796(9), b = 4.7645(8), c = 10.843(3) Å, β = 104.12(1)°, V = 399.8(1) Å3 (X = Cl), a = 8.155(3), b = 4.765(2), c = 11.286(4) Å, β = 104.21(3)°, V = 425.1(3) Å3 (X = Br) and a = 8.4370(9) b = 4.7652(5), c = 11.996(2) Å, β = 103.178(9)°, V = 469.6(1) Å3 (X = I). The crystal structures show infinite onedimensional screws YY′ of chalcogen atoms, with Y = Se and Y′ = Te alternately. The coordinations of Se and Te in these compounds are quite different.  相似文献   

16.
Three new extended iron‐containing heteropolytungstates were synthesized and structurally characterized: K6[{FeII(H2O)4}2(H2W12O42)]·15H2O ( 1 ), Na5[{Fe(H2O)3}2{Fe(H2O)4}0.5(H2W12O42)]·30H2O ( 2 ) and (H3O)+2[{Fe(H2O)4Fe(H2O)3}2(H2W12O42)]·20H2O ( 3 ). 1 and 3 crystallize in the monoclinic system, space group P21/n with a = 14.9967(5), b = 10.3872(3), c = 18.8237(6)Å, β = 93.407(1)°, V = 2927.1(2)Å3 and Dc = 4.151 g cm—3 for 1 , and space group P21/c with a = 12.1794(4), b = 22.4938(4), c = 11.6941(3) Å, β = 105.731(2)°, V = 3083.7(1) Å3, and Dc = 4.043 g cm—3 for 3 . 2 is triclinic, space group P1¯, with a = 12.121(2), b = 12.426(3), c = 13.247(3)Å, α = 68.33(3), β = 71.33(3), γ = 71.44(3)°, V = 1710.7(6)Å3 and Dc = 3.735 g cm—3. In all cases, the structures are based on paradodecatungstate polyoxoanions, which are linked by iron ions into chains, layers and a three‐dimensional structure for 1 , 2 and 3 , respectively.  相似文献   

17.
Synthesis, Crystal Structure and Thermal Behaviour of Fluoroaluminates of the Composition (NH4)[M(H2O)6](AlF6) (M = Zn, Ni), [Zn(H2O)6][AlF5(H2O)], and (PyH)4[Al2F10] · 4 H2O Four new fluoroaluminates were obtained from fluoroacidic solutions of respective metal salts. The compounds of zinc ( I a : P21/c, a = 12.688(3), b = 6.554(1), c = 12.697(3) Å, β = 95.21(3)°, V = 1051.5(4) Å3, Z = 4) and nickel ( I b : P21/c, a = 12.685(3), b = 6.517(1), c = 12.664(2)Å, β = 94.55(2)°, V = 1043.6(4) Å3, Z = 4) are isotypic and represent a new structure type consisting of two different cations, NH4+ and [M(H2O)6]2+ and [AlF6]3–‐anions. [Zn(H2O)6][AlF5(H2O)] ( II : C2/m, a = 10.769(2), b = 13.747(3), c = 6.487(1)Å, β = 100.02(3)°, V = 945.7(3) Å3, Z = 4) is characterized by a H2O/F‐disorder in the [AlF5(H2O)]‐octahedra in two trans positions. In (PyH)4[Al2F10] · 4 H2O ( III : Cmc21, a = 15.035(3), b = 20.098(4), c = 12.750(4) Å, V = 5364(2) Å3, Z = 8), bioctahedral [Al2F10]4– anions have been found for the first time. The structures are described and discussed in comparison. The new compounds were used as precursors in order to obtain new AlF3‐phases. However, the thermal decomposition did not result in the formation of any new metastable AlF3‐phase. Instead, phase mixtures of either α‐AlF3 and β‐AlF3 or AlF3 and MF2 were obtained.  相似文献   

18.
Structure and 1D‐magnetic properties of (pipzH2)[MnF4(H2PO4)] From hydrofluoric and phosphoric acid solution of Manganese(III), using piperazinium(2+) counter cations (pipzH22+) the chain‐anion [MnF4(H2PO4)]2— can be stabilized providing an interesting model system for studying the magnetic exchange interaction via phosphate bridges. Depending on the HF/H3PO4 excess (pipzH2)[MnF4(H2PO4)] crystallizes in two polymorphs I und II , differing mainly in the orientation of the cations. Form I is monoclinic, space group P21/c, Z = 4, a = 6.749(1), b = 12.039(1), c = 12.501(1) Å, β = 94.420(4)°, R = 0.023, Form II crystallizes in the same space group type P21/c, Z = 4, a = 6.651(1), b = 12.799(1), c = 12.825(1) Å, β = 110.312(5)°, R = 0.037. The Mn3+ ions are octahedrally surrounded by four terminal fluoride ligands and axially by bidentate bridging dihydrogenphosphate groups. The shape of the chain anions is very close in both modifications and characteristic for ferrodistortive Jahn‐Teller ordering.The Mn—O‐bonds along the chain direction are strongly elongated (distances 2.16 to 2.21 Å) whereas all Mn—F bond (1.81—1.88Å) are ruther short. On a large single crystal of form I 1D‐antiferromagnetic properties were found. By fitting an appropriate model based on the temperature dependence of the correlation lengths using an anisotropy constant D/k = —2.9 K a remarkably high exchange energy of J/k = —1.6(1) K along the chains could be determined.  相似文献   

19.
Four new thioantimonate(III) compounds with the general formula [TM(tren)]Sb4S7, TM = Mn 1 , Fe 2 , Co 3 and Zn 4 , were synthesized under solvothermal conditions by reacting elemental TM, Sb and S in an aqueous solution of tren (tren = tris(2‐aminoethyl)amine). All compounds crystallize in the monoclinic space group P21/n with four formula units in the unit cell. Single crystal X‐ray analyses of 1 [a = 8.008(2), b = 10.626(2), c = 25.991(5) Å, β = 90.71(3)°, V = 2211.4(8) Å3], 2 [a = 8.0030(2), b = 10.5619(2), c = 25.955(5) Å, β = 90.809(3)°, V = 2193.69(8) Å3], 3 [a = 7.962(2), b = 10.541(2), c = 25.897(5) Å, β = 90.90(3)°, V = 2173.0(8) Å3] and 4 [a = 7.978(2), b = 10.625(2), c = 25.901(5) Å, β = 90.75(3)°, V = 2195.2(8) Å3] reveal that the compounds are isostructural. The [Sb4S7]2‐ anions are composed of three SbS3 trigonal pyramids and one SbS4 unit as primary building units (PBU). The PBUs share common edges and corners to form semicubes (Sb3S4) which may be regarded as secondary building units (SBU). The SBUs and SbS3 pyramids are joined in an alternating fashion yielding the equation/tex2gif-stack-1.gif[Sb4S7] anionic chain which is directed along [100]. Weaker Sb‐S bonding interactions between neighbored chains lead to the formation of layers within the (001) plane which contain pockets that are occupied by the cations. The TM2+ ions are in a trigonal bipyramidal environment of four N atoms of the tren ligand and one S atom of the thioantimonate(III) anion. The optical band gaps depend on the TM2+ ion and amount to 3.11 eV for 1 , 2.04 eV for 2 , 2.45 eV for 3 , and 2.60 eV for 4 .  相似文献   

20.
The title compound, 4-n-nonylbenzoic acid, CH3(CH2)8C6H4COOH (NBA), has been characterized thus: triclinic, P1, a = 13.514(4)Å, b = 23.4672(5)Å, c = 7.658(3)Å, alpha = 90.914(3)°, beta = 100.403(3)°, gamma = 77.781(2)°, V = 2334(2)Å3, Z = 2, and F.W = 745.06, Dm = 1.161 g cm-3, Dc = 1.061 g cm-3, F000 = 816.00, lambda = 0.71069Å, mu = 0.6 cm-1, goodness-of-fit is 1.029, final R1 = 0.063 and wR2 = 0.16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号