首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of various halogenated peroxyl radicals with guanine, uric acid, xanthine, hypoxanthine and ascorbic acid in a quaternary microemulsion consisting of sodium lauryl sulfate/water/1-pentanol/cyclohexane have been studied using the technique of pulse radiolysis. For all purine derivatives and ascorbic acid, formation of the respective radical cations have been observed. Variation in biomolecular rate constant values for the reactions of peroxyl radicals with the above-mentioned compounds has been discussed in terms of diffusion of radicals.  相似文献   

2.
The one-electron oxidation of Mitomycin C (MMC) as well as the formation of the corresponding peroxyl radicals were investigated by both steady-state and pulse radiolysis. The steady-state MMC-radiolysis by OH-attack followed at both absorption bands showed different yields: at 218 nm Gi (-MMC) = 3.0 and at 364 nm Gi (-MMC) = 3.9, indicating the formation of various not yet identified products, among which ammonia was determined, G(NH3) = 0.81. By means of pulse radiolysis it was established a total κ (OH + MMC) = (5.8 ± 0.2) × 109 dm3 mol−1 s−1. The transient absorption spectrum from the one-electron oxidized MMC showed absorption maxima at 295 nm (ε = 9950 dm3 mol−1 cmt-1), 410 nm (ε = 1450 dm3 mol−1 cm−1) and 505 nm ( ε = 5420 dm3 mol−1 cm−1). At 280–320 and 505 nm and above they exhibit in the first 150 μs a first order decay, κ1 = (0.85 ± 0.1) × 103 s−1, and followed upto ms time range, by a second order decay, 2κ = (1.3 ± 0.3) × 108 dm3 mol-1 s−1. Around 410 nm the kinetics are rather mixed and could not be resolved.

The steady-state MMC-radiolysis in the presence of oxygen featured a proportionality towards the absorbed dose for both MMC-absorption bands, resulting in a Gi (-MMC) = 1.5. Among several products ammonia-yield was determined G(NH3) = 0.52. The formation of MMC-peroxyl radicals was studied by pulse radiolysis, likewise in neutral aqueous solution, but saturated with a gas mixture of 80% N2O and 20% O2. The maxima of the observed transient spectrum are slightly shifted compared to that of the one-electron oxidized MMC-species, namely: 290 nm (ε = 10100 dm3 mol−1 cm−1), 410 nm (ε = 2900 dm3 mol−1 cm−1) and 520 nm (ε = 5500 dm3 mol−1 cm−1). The O2-addition to the MMC-one-electron oxidized transients was found to be at 290 to 410 nm gk(MMC·OH + O2) = 5 × 107 dm3 mol−1 s−1, around 480 nm κ = 1.6 × 108 dm3 mol−1 s−1 and at 510 nm and above, κ = 3 × 108 dm3 mol−1 s−1. The decay kinetics of the MMC-peroxyl radicals were also found to be different at the various absorption bands, but predominantly of first order; at 290–420 nm κ1 = 1.5 × 103 s−1 and at 500 nm and above, κ = 7.0 × 103 s−1.

The presented results are of interest for the radiation behaviour of MMC as well as for its application as an antitumor drug in the combined radiation-chemotherapy of patients.  相似文献   


3.
Reactions of OH radicals and some one-electron oxidants with 2-aminopyridine (2-AmPy) and 3-aminopyridine (3-AmPy) were studied in aqueous solutions using pulse radiolysis technique. The OH adduct of 2-AmPy at pH 9 has an absorption maximum at 360 nm along with a weak absorption band in the visible region and was found to be reactive with oxygen. The rate constant for its reaction with O2 was determined to be 1.0×108 dm3 mol−1 s−1. At pH 4 also, the OH adduct of 2-AmPy has an absorption band at 360 nm. However, there are differences in the absorption at other wavelengths. From the plot of ΔOD vs. pH at 340 nm, the pKa of the OH adduct was determined to be 6.5. Among the specific oxidants, only SO4−√ radicals were able to oxidize 2-AmPy. In the case of 3-aminopyridine (3-AmPy), the transient species formed by OH radical reaction at pH 9 has an absorption maximum at 410 nm with shoulder bands on both the sides. Its absorption spectrum at pH 4 was different indicating the existence of a pK value for the OH adduct. pKa of 3-AmPy-OH radical adduct species was evaluated to be 5.7. This adduct species was also found to be reactive with oxygen (k=7.6×106 dm3 mol−1 s−1). Specific one-electron oxidants like N3, Br2−√ C2−√ and SO4−√ were able to oxidize 3-AmPy indicating that it is easier to oxidize 3-AmPy as compared to 2-AmPy.  相似文献   

4.
Radiolytic reduction of BiOClO4 in aqueous solutions leads to the formation of bismuth clusters and larger nanoparticles. The mechanisms of redox reactions of the polycationic Bi(III) species that exist in the solution were investigated with pulse radiolysis. The kinetic and spectral properties of the transients formed by the reaction of these species with the primary radicals from water radiolysis are reported. The single-electron reduction product, Bi9(OH)224+, absorbs at lambdamax = 273 nm, while the OH adduct, Bi9(OH)235+, has a broad absorption spectrum with a maximum at 280 nm and a shoulder at 420 nm. Several rate constants were measured: k (e-aq + Bi9(OH)225+) = 1.2 x 1010 M-1 s-1 and k (OH + Bi9(OH)225+) = 1.5 x 109 M-1 s-1. The reduced species, Bi9(OH)224+ further reacts with (CH3)2COH radicals, but not with CH2C(CH3)2OH radicals from t-butanol, to produce a doubly reduced polynuclear species. A few reactions of the reduction of the Bi salt in the presence of poly(acrylic acid) are also described. In the presence of the polymer, a metal-polymer complex is formed prior to the irradiation, and the reduction reactions are significantly slowed down.  相似文献   

5.
Using pulse radiolysis, free radicals of ascorbic acid were generated by reactions of the primary radicals H and OH in acidic and basic aqueous solutions. The formation and the decay of several radicals of ascorbic acid were detected by time resolved Fourier transform electron spin resonance within a time interval of 100 ns to 1 ms. The rate constant of addition of H atoms to ascorbic acid (1.3·108 dm3· mol−1·s−1) was directly determined by the change of line width of the low field line of the H atom in the presence of ascorbic acid. The addition of OH radicals to ascorbic acid results in different radical structures, detected by highly resolved Fourier transform ESR spectra.  相似文献   

6.
Model systems, based on aqueous solutions containing isoflurane (CHF(2)OCHClCF(3)) as an example, have been studied in the presence and absence of methionine (MetS) to evaluate reactive fates of halogenated hydroperoxides and peroxyl and alkoxyl radicals. Primary peroxyl radicals, CHF(2)OCH(OO*)CF(3), generated upon 1-e-reduction of isoflurane react quantitatively with MetS via an overall two-electron oxidation mechanism to the corresponding sulfoxide (MetSO). This reaction is accompanied by the formation of oxyl radicals CHF(2)OCH(O*)CF(3) that quantitatively rearrange by a 1,2-hydrogen shift to CHF(2)OC*(OH)CF(3). According to quantum-chemical calculations, this reaction is exothermic (DeltaH = -5.1 kcal/mol) in contrast to other potentially possible pathways. These rearranged CHF(2)OC*(OH)CF(3) radicals react further via either of two pathways: (i) direct addition of oxygen or (ii) deprotonation followed by fluoride elimination resulting in CHF(2)OC(O)CF(2)*. Route i yields the corresponding CHF(2)OC(OO*)(OH)CF(3) peroxyl radicals, which eliminate H+/O(2)*-. The resulting ester, CHF(2)OC(O)CF(3), hydrolyzes further, accounting for the formation of HF, trifluoroacetic acid, and formic acid with a contribution of 45% and 80% in air- and oxygen-saturated solutions, respectively. A competitive pathway (ii) involves the reactions of the secondary peroxyl radicals, CHF(2)OC(O)CF(2)OO*. The two more stable of the three above mentioned peroxyl radicals can be distinguished through their reaction with MetS. Although the primary CHF(2)OCH(OO*)CF(3) oxidizes MetS to MetSO in a 2-e step, the majority of the secondarily formed CHF(2)OC(O)CF(2)OO* reacts with MetS via a 1-e transfer mechanism, yielding CHF(2)OC(O)CF(2)OO-, which eventually suffers a total breakup into CHF(2)O- + CO(2) + CF(2)O. Quantum-chemical calculations show that this reaction is highly exothermic (DeltaH = -81 kcal/mol). In air-saturated solution this pathway accounts for about 35% of the overall isoflurane degradation. Minor products (10% each), namely, oxalic acid and carbon monoxide originate from oxyl radicals, CHF(2)OC(O)CF(2)O* and CHF(2)OCH(O*)CF(3). An isoflurane-derived hydroperoxide CHF(2)OCH(OOH)CF(3) in high yield was generated in radiolysis of air-saturated solutions containing isoflurane and formate either via a H-atom abstraction from formate by the isoflurane-derived peroxyl radicals or by their cross-termination reaction with superoxide O(2)*-. CHF(2)OCH(OOH)CF(3), is an unstable intermediate whose multistep hydrolysis is giving H(2)O(2) + 2HF + HC(O)OH + CF(3)CH(OH)(2). In the absence of MetS, about 55% of CHF(2)OCH(OO*)CF(3) undergo termination via the Russell mechanism and 27% are involved in cross-termination with superoxide (O(2)*-) and peroxyl radicals derived from t-BuOH (used to scavenge *OH radicals). The remaining 18% of the primary peroxyl radicals undergo termination via formation of alkoxyl radicals, CHF(2)OCH(O*)CF(3).  相似文献   

7.
Reactions of 2- and 3-nitro anilines (2- and 3-NA) with eaq, H-atoms and one-electron reductants have been studied using pulse radiolysis in aqueous solutions. Reactions of eaq were found to be quite fast with both 2-NA and 3-NA resulting in their corresponding semi-reduced species which are reducing in nature. Reduction potentials for 2-NA/2-Na•′ have been estimated to be approx. −0.56 Vvs. NHE and that for 3-NA/3-NA•− was found to be between −0.185 V and −0.45 Vvs. NHE. Semi-reduced 2-NA has main absorption peak at 300 nm with a shoulder in the 350 nm region and a broad weak band in the 470–500 nm region, whereas semi-reduced 3-NA possesses an absorption peak at 520 nm. Reducing radicals such as (CH3)2 COH and CO2•− reacted with 2-NA, producing semi-reduced species, whereas reactions of these radicals with 3-NA produced their corresponding radical-adduct species.  相似文献   

8.
Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the abstraction reactions will not occur in the present case. Finally, the time dependent density functional theory (TDDFT) calculations predicted an absorption maximum of 292 nm for the N3-OH_5Ac* adduct, which is close to the experimentally observed spectral maxima at 290 nm. Hence, it is assumed that the addition to the most reactive center N3, which results the N3-OH_5Ac* radical, occurs via a kinetically driven process.  相似文献   

9.
We introduce an algorithm to solve the secular equation that arises in the time independent multimode expansion of the quadratic vibronic coupling problem in parallel. The implementation can handle expansions of arbitrary length, with the open-ended character of the algorithm achieved through the use of fine grained parallelism to partition the trial vectors. The characteristics of the algorithm are discussed and its utility is illustrated by determining a model photoelectron spectrum of the ethoxy radical (C2H5O) using a vibronic expansion involving more than 1 billion vibronic basis states. This calculation also represents the first determination of a photoelectron spectrum obtained using a diabatic Hamiltonian obtained with a recently introduced ab initio surface reshaping procedure.  相似文献   

10.
The phenoxyl radicals of eugenol (EgOH) and isoeugenol (iEgOH) were generated by the specific one‐electron oxidant N3· using pulse radiolysis technique, and were characterized by their absorption spectra, decay and formation kinetics, and one‐electron reduction potential (E71) values. Reactivities of eugenol phenoxyl radical with the biologically important molecule, trolox C (analogue of vitamin E, α‐tocopheral), were determined. Reactions of OH with these phenols were studied at different pHs and suitable mechanisms for these reactions were suggested. Scavenging abilities of the phenols toward highly damaging Br·, NO2·, and CCl3O2· radicals were evaluated. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 17–23, 2000  相似文献   

11.
The reactions of OH* and eaq ? adducts of uracil and thymine with Cu(II) ions in aqueous solutions were followed by pulse radiolysis. The transient absorption spectra of the OH* adducts of uracil when followed in the presence of Cu(II) ions show growth in absorption at wavelengths 420 and 350 nm at 15 μs and 65 μs after the pulse respectively. Similar transient absorption spectra of thymine showed growth in absorption at wavelengths 390 and 320 nm at 38 μs and 65 μs after the pulse respectively. The rates of electron transfer from the OH* adducts of uracil and thymine to various Cu(II) compounds when monitored at 360 nm lie between 106 and 108 mol?1 dm3 s?1 this implies that the electron transfer process is not an efficient process. Low rate constants coupled with the spectral changes suggest formation of a radical copper adduct which decays by water insertion to give cis-glycols as the major product. The electron transfer from the electron adducts of uracil and thymine to various copper(II) compounds takes place more efficiently (rate constants of the order of 108 and 109 mol?1 dm3 s?1) compared with that from the OH* adducts. The t-butanol radicals formed on scavenging the OH* radicals also produce adducts with Cu(I) ions which are formed on oxidation of the electron adducts by Cu(II) ions. This adduct has absorption around 400 nm both in the case of uracil and thymine.  相似文献   

12.
A model of an early transition state with charge transfer is proposed for calculation of the activation parameters of the abstraction of a hydrogen atom by peroxyl radicals from the molecules of organic compounds. It was shown that the compensation effect in this reaction is due to the fact that the change in the preexponential factor is determined by change in the vibrational component of the entropy of activation. L. M. Litvinenko Institute of Physical Chemistry and Coal Chemistry, Academy of Sciences of Ukraine, Donetsk. Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 33, No. 1, pp. 6–11, January–February, 1997.  相似文献   

13.
The selective interactions of azide radicals with glutathione (GSH) have been quantitatively studied in buffered neutral aqueous solutions using γ and pulse radiolysis. The sulfur centered GS̽ and GSSG⨪ radicals are produced in pulse and γ radiolysis. Kinetic experiments and simulation allowed to estimate the rate constant of N̽3 with GSH which has been found to be equal to (9.5 ± 0.5) × 106M−1 s−1 at pH 7. In steady state radiolysis, we have found GSSG as the final product formed with an initial G value of 2.9 × 10−7 mol J−1.  相似文献   

14.
15.
16.
Conclusions 1. Pulse radiolysis was used to find the rate constants for the reactions of OH, HSO4, NO3, and Cl2 radicals with neptunoyl ions.Change in the NO3 and H+ ion concentrations do not affect the term k[NO3 + NpO2 +], while k[Cl2 + NpO2 +] increases with increasing chloride concentration due to the formation of neptunoyl ion chlorocomplexes.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 456–458, February, 1986.  相似文献   

17.
18.
It has been found that the radiolysis of the aqueous solutions of α,β-amino alcohols leads to the formation of degradation products of the parent substances. The experimental data suggest that the degradation process includes the stage of the formation of aminyl radicals, which undergo decomposition with the simultaneous cleavage of -C-C- and -O-H bonds through a five-membered transition state. The radiation-induced degradation of amino alcohols is enhanced in an alkaline medium, in which the amino group is deprotonated, and is blocked via the etherification of the hydroxyl group in the parent substances or the introduction of reducing agents.  相似文献   

19.
Recently, completely incinerable N,N-dihexyloctanamide (DHOA) has been identified as a promising alternative to tri-n-butyl phosphate for the reprocessing of spent nuclear fuels. The present work deals with the pulsed radiolytic investigation on the reactions of DHOA with the radicals produced in the radiolysis of nitric acid and dodecane medium. The rate constants of the reactions of DHOA with solvated electron, nitrate radical and dodecane radicals have been measured and the transients have been characterized. In addition, the reactions of DHOA transients have also been studied.  相似文献   

20.
Using the pulse radiolysis technique we have studied the oxidation by various inorganic radicals of four water soluble ferrocene derivatives, hydroxyethyl, dimethylaminomethyl, monocarboxylic acid and dicarboxylic acid. We report the second order rate constants for these reactions, the stabilities and spectral properties of the ferrocinium products, and the electrochemically determined ferrocinium/ferrocene redox potentials. We also present preliminary estimates of tyrosine and tryptophan radical redox potentials obtained with the dicarboxylic acid ferrocene derivative as reference, and we discuss the relationship between redox potential differences and the reactivities of the ferrocenes with the inorganic radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号