首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the particle growth mechanism in propylene polymerization with high-yield MgCl2-supported Ziegler-Natta catalysts, observations have been carried out by electron microscopy on a series of samples having different degrees of polymer growth (from 0.1 to 1000 g/g of catalyst). Topics such as surface and bulk morphology, catalyst fragmentation, as well as distribution of the catalyst residues in the polymer have been investigated. The experimental data suggest that if the site distribution in the catalyst is uniform and the polymerization conditions are mild, the polymer growth starts uniformly throughout the catalyst particle, which then undergoes an even and progressive fragmentation into very fine units homeogeneously dispersed in the polymer matrix. The above results thus provide further experimental support to the particle growth mechanism outlined in the multigrain or polymeric flow models. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The olefin polymerizations were carried out by using silica supported metallocene/MAO catalysts and MgCl2 supported Ziegler-Natta catalysts under mild reaction conditions and stopped at very low yield. The surface and cross sectional morphology of the polymer particles were characterized by using scanning electron microscopy (SEM). A homogeneous distribution of (co)catalyst on the support material is a prerequisite condition to get a homogeneous fragmentation and uniform polymer particle morphology. In the present work the catalysts show two different fragmentation behaviors. They can gradually fragment from the outer to the inner surface of the catalyst particle, or instantaneously break up into a large amount of small sub-particles at the beginning of the polymerization. The incorporation of comonomer does not change the general catalyst fragmentation scheme but delays the catalysts break-up progress.  相似文献   

3.
The penta-ether compound was synthesized by the reaction of di(trimethylolpropane) with sodium hydride as the strong base and methyl iodide as the alkyl halide. This compound was characterized by NMR, FTIR, and GC techniques. The MgCl2-supported titanium catalysts were incorporated with varying amounts of penta-ether compound as the internal donor and also the catalysts without the internal donor were synthesized. The synthesized catalysts and the conventional Ziegler- Natta catalyst were characterized. The titanium contents were determined by spectrophotometry, magnesium by complexometric titration and chloride by argentometric titration. The effects of the new internal donor on propylene polymerization with the prepared MgCl2-supported Ziegler-Natta catalysts were investigated and then these results were compared to the results obtained using the conventional diisobutyl phthalate-besed-Ziegler-Natta catalyst. The highest crystallinity degree, melting temperature, and isotacticity of polypropylene were obtained using the catalyst with a penta-ether/Mg molar ratio equal to 0.21.  相似文献   

4.
Several kinds of MgCl2-supported half titanocene (XTiCl3; X = cyclopentadienyl, pentamethylcyclopentadienyl, indenyl, and heptamethylindenyl) catalysts were prepared and applied to propene polymerization using Al(i-Bu)3a as cocatalyst. It was confirmed from the catalyst analysis that the ligand (X) is attached to titanium even after the reaction with Al(i-Bu)3. When polymerization was conducted without any external donor, those catalysts predominantly gave atactic PP. However, addition of a suitable monofunctional Lewis base like ethylbenzoate caused to change the stereospecificity of polymer from aspecific into highly isospecific. On the other hand, the use of a bifunctional donor like di-n-butylphthalate killed the activity almost completely. The isotactic PP was found to have a microstructure similar to that obtained with metallocene catalysts. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
The new hepta-ether compound as the internal donor was synthesized using the Williamson reaction of dipentaerythritol with sodium hydride as the strong base and iodomethane as the alkyl halide. The hepta-ether compound was characterized by NMR, FTIR, and GC techniques. The MgCl2-supported catalysts incorporated with different amounts of hepta-ether compound as the internal donor and without the internal donor were synthesized and characterized. The propylene polymerization was carried out using these catalysts in the presence of triethylaluminum as a co-catalyst and hydrogen as a chain transfer agent, with and without the external donor. The effect of a new internal donor on propylene polymerization using prepared MgCl2-supported Ziegler-Natta catalysts was investigated.  相似文献   

6.
Several kinds of dichlorobis(β-diketonato)titanium complexes, i.e., Ti(ace-tylacetonato)2Cl2, Ti(1-benzoylacetonato)2Cl2, Ti(2,2,6,6-tetramethyl-3,5-heptanedionato)2Cl2 and Ti(4,4,4-trifluoro-1-phenyl-1,3-butanedionato)2Cl2, were synthesized and the corresponding MgCl2-supported catalysts were prepared by impregnation method. The test of them for propene polymerization revealed that those MgCl2-supported catalysts could be activated not only by methylaluminoxane (MAO) but also by ordinary alkylaluminums as well. The effect of typical Lewis bases on the catalyst performance was investigated in some detail, which indicated that organic silanes are most effective for the improvement of isospecificity of those catalysts. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 129–135, 1998  相似文献   

7.
The chain transfer reaction by hydrogen in the initial stage of propene polymerization with MgCl2-supported Ziegler catalyst was studied by means of the stopped-flow polymerization. The yield and molecular weight of polypropene produced in the initial stage were not affected by hydrogen. Thus, the method was successfully applied to find the region in which hydrogen does not act as a chain transfer reagent. On the other hand, a chain transfer reaction proceeded in the initial stage of polymerization by using Zn(C2H5)2. Furthermore, when the catalyst was treated with Al(C2H5)3 before polymerization, the molecular weight of the produced polymer was decreased by using hydrogen, indicating that it acted as a chain transfer agent for the catalyst modified by pre-treatment.  相似文献   

8.
The behavior in propylene polymerization of divalent titanium compounds of type [η6-areneTiAl2Cl8], both as such and supported on activated MgCl2, has been studied and compared to that of the simple catalyst MgCl2/TiCl4. Triethylaluminium was used as cocatalyst. The Ti–arene complexes were active both in the presence and in the absence of hydrogen, in contrast to earlier reports that divalent titanium species are active for ethylene but not for propylene polymerization. 13C-NMR analysis of low molecular weight polymer fractions indicated that the hydrogen activation effect observed for the MgCl2-supported catalysts should be ascribed to reactivation of 2,1-inserted (“dormant”) sites via chain transfer, rather than to (re)generation of active trivalent Ti via oxidative addition of hydrogen to divalent species. Decay in activity during polymerization was observed with both catalysts, indicating that for MgCl2/TiCl4 catalysts decay is not necessarily due to overreduction of Ti to the divalent state during polymerization. In ethylene polymerization both catalysts exhibited an acceleration rather than a decay profile. It is suggested that the observed decay in activity during propylene polymerization may be due to the formation of clustered species that are too hindered for propylene but that allow ethylene polymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2645–2652, 1997  相似文献   

9.
In spite of great commercial importance of the Phillips CrOx/SiO2 catalyst and long term research efforts, the precise physicochemical nature of active sites and polymerization mechanisms still remains unclear. The difficulties in a clear mechanistic understanding of this catalyst mainly come from the complexity of the surface chemistry of the amorphous silica gel support. In this work, novel silsesquioxane-supported Phillips Cr catalysts are utilized as realistic models of the industrial catalyst for theoretical investigation using the density functional theory (DFT) method in order to elucidate the effects of surface chemistry of silica gel in terms of supporting of chromium compounds and fluorination of the silica surface on the catalytic properties of the Phillips catalyst. Both qualitative and quantitative aspects with respect to various electronic properties and thermodynamic characteristics of the model catalysts were achieved. The future prospects of a state-of-the-art catalyst design and mechanistic approaches for the heterogeneous SiO2-supported Phillips catalyst has been demonstrated. The text was submitted by the authors in English.  相似文献   

10.
A novel polymer-supported titanium-based catalyst shows high activity and nondecaying kinetic profiles for ethylene polymerization. The presence of 1-hexene comonomer drastically increases the catalyst activity, exhibiting a similarity to the MgCl2-supported catalysts. However, the nondecaying kinetic profiles of copolymerization distinguish this catalyst from the latter. Infrared analysis indicates that the transition metals were immobilized on the polymer support via functional groups. The effects of polymerization conditions on catalyst activity have been assessed. Characterization of the resulting polymer product by means of 13C-NMR, DSC, and SEM demonstrates a branch-free structure with high melting point, high crystallinity, and high molecular weight for the ethylene homopolymer. The reactivity ratios of ethylene-1-hexene copolymerization are evaluated from 13C-NMR analysis data. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The physical state of the material obtained during the various stages of preparation of a typical MgCl2-supported, high-mileage propylene polymerization catalyst was studied by BET, mercury porosimetry, and x-ray diffraction techniques. The starting MgCl2 and the substance after HCl treatment have negligible BET surface areas. Mercury porosimetry showed that they have large pores with radii > 200 nm which are probably crevices between MgCl2 crystallites. The most pronounced physical changes occur during dry porcelain ball milling in the presence of ethyl benzoate. After 60 h or more of ball milling the material had a 5.1–7.3 m2 g?1 BET surface area, twice the pore surface area, and a smaller pore radius than before ball milling and a large reduction in crystallite sizes to almost ultimate dimensions. The crystallites were probably held together by complexation with ethyl benzoate in the form of large agglomerates. Subsequent reactions with p-cresol and triethyl aluminum had minor effects in further reduction of the MgCl2 crystallite size but efficiently brokeup the agglomerates. The final refluxing with TiCl4 increased the BET surface area to 110–150 m2 g?1 but may have increased the crystallite size somewhat due to cocrystallization of TiCl3 and AlCl3 with MgCl2. There may have been only 8–10 crystallites in each catalyst particle. The surface structure of the catalyst resembled those of the classical Ziegler-Natta γ-TiCl3·0.33 AlCl3 catalyst.  相似文献   

12.
The Phillips Cr/silica catalyst produces low levels of long chain branching (LCB) in polyethylene, which have a powerful influence on industrial molding behavior. Although many catalyst and reactor variables determine the degree of LCB, perhaps the most significant of these is the morphology of the silica support. In this study many different types of silicas were converted into Cr/silica catalysts, which were tested in ethylene polymerization, and the resultant polymer elasticity was then determined. In some experiments, the surface area of the catalyst seemed to correlate quite well with polymer elasticity. In other tests, however, no connection with surface area was evident but the pore volume was quite influential. Together, all these studies suggest that it is the degree of structural reinforcement of the silica matrix, rather than any one physical measurement of porosity, that influences elasticity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 845–865, 2009  相似文献   

13.
Vaporization of MgCl2 and other metal halides results in monomeric gas-phase species. Cocondensation of these species with organic diluents such as heptane yields highly activated solids which are precursors to MgCl2 supported “high-mileage” catalysts for olefin polymerization. These catalysts, prepared by treatment with TiCl4 followed by standard activation with aluminum alkyls display high activity for ethylene and propylene polymerization. MgCl2 can also be evaporated into neat TiCl4 to give a related catalyst. The concentration of MgCl2 in the diluent affects catalyst properties as does the nature of the diluent. TiCl3, 3TiCl3 · AlCl3, VCl3 and other metal halides are subject to similar activation.  相似文献   

14.
Summary: A series of poly(propylenes) (PPs) were prepared by slurry polymerization using a MgCl2-supported transition metal catalyst. Two different external donors (EDs) were used: diphenyl dimethoxysilane (DPDMS) and methylphenyl dimethoxysilane (MPDMS). The molecular weight (MW) of the PPs was controlled using molecular hydrogen that was used as a transfer agent. To obtain materials with differing molecular weight and similar tacticities, polymers were fractionated with prep-TREF. DSC analyses of blends of TREF fractions showed that the crystallization behaviour of the polymer blends are strongly affected by the configuration (tacticity) and MW of the PP.  相似文献   

15.
This study focuses on gas-phase polymerization of ethylene using the titanium-based Ziegler–Natta catalysts prepared from different magnesium sources including MgCl2 (Cat A), magnesium powder (Cat B), and Mg(OEt)2 (Cat C). During polymerization, different cocatalysts were also used. It was found that Cat C with triethylaluminum as a cocatalyst exhibited the highest activity. This was likely attributed to optimal distribution of active sites on the catalyst surface. It can be observed by increased temperature in the reactor due to highly exothermic reaction during polymerization. By the way, the morphologies of the polymer obtained from this catalyst were spherical, which is more preferable. Besides the catalytic activity, crystallinity and morphology were also affected by the different magnesium sources used to prepare the catalysts.  相似文献   

16.
A highly systematic size series of Ziegler catalysts with similar porosities and surface textures are synthesized by varying the stirring speed during the MgCl2 support synthesis. Besides the mean particle size, the only substantial difference observed between the various catalysts is the size and number of nodules per particle. Varying the mean diameter of the catalyst particles between 1.5 and 11.9 µm, leads to a pronounced impact on the activity in ultra‐high molecular weight polyethylene (UHMWPE) polymerization, while the Mw capabilities are only affected to a limited extend. In addition, it is observed that both the Mws as the polymer bulk density (BD) increases during the course of the polymerization. This particularity allows to optimize the Mw and/or BD at a set polymer size, by tuning the catalyst particle size. This is particularly interesting in UHMWPE production, as control of the morphological and structural properties of the UHMWPE reactor powders are critical for efficient processing as well as the performance of the final product. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2679–2690  相似文献   

17.
Factors affecting the particular shape of kinetic rate–time profiles in the polymerization of ethylene with a MgCl2-supported TiCl4 catalyst activated by Al(C2H5)3 have been investigated. Examination of the dependence of the polymerization rate on the concentration of Al(C2H5)3 resulted in a Langmuir–Hinshelwood rate law. Analysis of the polymerization rate as a function of the polymerization temperature gave about 46 kJ mol?1 for the overall activation energy. Examination of the rapid decay of the polymerization rate with time showed that this decay is represented better by a first-order decay law than by a second-order one. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The Cr/SiO2 Phillips catalyst has taken a central role in ethylene polymerization since its invention in 1953. The uniqueness of this catalyst is related to its ability to produce broad molecular weight distribution (MWD) PE materials as well as that no co-catalysts are required to attain activity. Nonetheless, co-catalysts in the form of metal-alkyls can be added for scavenging poisons, enhancing catalyst activity, reducing the induction period, and tailoring polymer characteristics. The activation mechanism and related polymerization mechanism remain elusive, despite extensive industrial and academic research. Here, we show that by varying the type and amount of metal-alkyl co-catalyst, we can tailor polymer properties around a single Cr/SiO2 Phillips catalyst formulation. Furthermore, we show that these different polymer properties exist in the early stages of polymerization. We have used conventional polymer characterization techniques, such as size exclusion chromatography (SEC) and 13C NMR, for studying the metal-alkyl co-catalyst effect on short-chain branching (SCB), long-chain branching (LCB) and molecular weight distribution (MWD) at the bulk scale. In addition, scanning transmission X-ray microscopy (STXM) was used as a synchrotron technique to study the PE formation in the early stages: allowing us to investigate the produced type of early-stage PE within one particle cross-section with high energy resolution and nanometer scale spatial resolution.  相似文献   

19.
MgCl(2)-SiO(2)/TiCl(4) Ziegler-Natta catalysts for ethylene polymerization were prepared by impregnation of MgCl(2) on SiO(2) in heptane and further treatment with TiCl(4). MgCl(2)·nEtOH adduct solutions were prepared with various EtOH/MgCl(2) molar ratios for preparation of the MgCl(2)-supported and MgCl(2)-SiO(2)-supported catalysts in order to investigate the effect on polymerization performance of both catalyst systems. The catalytic activities for ethylene polymerization decreased markedly with increased molar ratios of [EtOH]/[MgCl(2)] for the MgCl(2)-supported catalysts, while for the bi-supported catalysts, the activities only decreased slightly. The MgCl(2)-SiO(2)-supported catalyst had relatively constant activity, independent of the [EtOH]/[MgCl(2)] ratio. The lower [EtOH]/[MgCl(2)] in MgCl(2)-supported catalyst exhibited better catalytic activity. However, for the MgCl(2)-SiO(2)-supported catalyst, MgCl(2) can agglomerate on the SiO(2) surface at low [EtOH]/[MgCl(2)] thus not being not suitable for TiCl(4) loading. It was found that the optimized [EtOH]/[MgCl(2)] value for preparation of bi-supported catalysts having high activity and good spherical morphology with little agglomerated MgCl(2) was 7. Morphological studies indicated that MgCl(2)-SiO(2)-supported catalysts have good morphology with spherical shapes that retain the morphology of SiO(2). The BET measurement revealed that pore size is the key parameter dictating polymerization activity. The TGA profiles of the bi-supported catalyst also confirmed that it was more stable than the mono-supported catalyst, especially in the ethanol removal region.  相似文献   

20.
Drastic changes occur during the initial stages of the α-olefin polymerization over heterogeneous catalysts. Fragmentation of the support takes place as polymer is formed at the active sites within the voids of the support/catalyst. Magnesium chloride-supported titanium catalyst/polymer particles have been analyzed employing high-resolution computed microtomography (CMT) using synchrotron radiation at Brookhaven National Laboratory. The changes in morphology, the spatial distribution of the support/catalyst fragments, porosity, and polymer distribution in single growing polypropylene and polyethylene particles have been studied. These studies documented considerable macroporosity ( > 2 μm in size) within the growing catalyst/support/polymer particles. The largest pores may be due to agglomeration of smaller subparticles. Our results confirm that the initial fragmentation of the support proceeds readily and uniformly to yield a multi-grain growth of subparticle agglomerates. The support/catalyst fragments appear to be distributed relatively uniformly within the growing polymer particle. The surface of the subparticle agglomerates is accessible through the void-space between growing catalyst/particle grains. This may facilitate monomer transport to the activate sites through the polymer/catalyst particles. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号