首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The time-dependent Navier–Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity–pressure–vorticity–temperature–heat-flux ( u –P–ω–T– q ) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.  相似文献   

2.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The use of the velocity-pressure formulation of the Navier-Stokes equations for the numerical solution of fluid flow problems is favoured for free-surface problems, more involved flow configurations, and three-dimensional flows. Many engineering problems involve such features in addition to strong inertial effects. The computational instabilities arising from central-difference schemes for the convective terms of the governing equations impose serious limitations on the range of Reynolds numbers that can be investigated by the numerical method. Solutions for higher Reynolds numbers Re > 1000 could be reached using upwind-difference schemes. A comparative study of both schemes using a method based on the primitive variables is presented. The comparison is made for the model problem of the driven flow in a square cavity. Using a central scheme stable solutions of the pressure and velocity fields were obtained for Reynolds numbers up to 5000. The streamfunction and vorticity fields were calculated from the resulting velocity field and compared with previous solutions. It is concluded that total upwind differencing results in a considerable change in the flow pattern due to the false diffusion. For practical calculations, by a proper choice of a small amount of partial upwind differencing the vorticity diffusion near the walls and the global features of the solutions are not sigificantly altered.  相似文献   

6.
A method is developed for performing a local reduction of the governing physics for fluid problems with domains that contain a combination of narrow and non‐narrow regions, and the computational accuracy and performance of the method are measured. In the narrow regions of the domain, where the fluid is assumed to have no inertia and the domain height and curvature are assumed small, lubrication, or Reynolds, theory is used locally to reduce the two‐dimensional Navier–Stokes equations to the one‐dimensional Reynolds equation while retaining a high degree of accuracy in the overall solution. The Reynolds equation is coupled to the governing momentum and mass equations of the non‐narrow region with boundary conditions on the mass and momentum flux. The localized reduction technique, termed ‘stitching,’ is demonstrated on Stokes flow for various geometries of the hydrodynamic journal bearing—a non‐trivial test problem for which a known analytical solution is available. The computational advantage of the coupled Stokes–Reynolds method is illustrated on an industrially applicable fully‐flooded deformable‐roll coating example. The examples in this paper are limited to two‐dimensional Stokes flow, but extension to three‐dimensional and Navier–Stokes flow is possible. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Finite elements using higher-order basis functions in the spirit of the QUICK method for convection-dominated fluid flow and transport problems are introduced and demonstrated. Instead of introducing new internal degrees of freedom, completeness is achieved by including functions based on nodal values exterior and upwind to the element domain. Applied with linear test functions to the weak statements for convection-dominated problems, a family of Petrov–Galerkin finite elements is developed. Quadratic and cubic versions are demonstrated for the one-dimensional convection–diffusion test problem. Elements of up to seventh degree are used for local solution refinement. The behaviour of these elements for one-dimensional linear and non-linear advection is investigated. A two-dimensional quadratic upwind element is demonstrated in a streamfunction–vorticity formulation of the Navier–Stokes equations for a driven cavity flow test problem. With some minor reservations, these elements are recommended for further study and application.  相似文献   

8.
In this paper the high-order formulations described by Liao (Int. j. numer. methods fluids, 15, 595–612 (1992)) are proved to be stable for viscous flow under high Reynolds number. As an example, results for shear-driven flow in a square cavity at Reynolds numbers up to 10,000 are given.  相似文献   

9.
This paper contains a comparison of four SIMPLE‐type methods used as solver and as preconditioner for the iterative solution of the (Reynolds‐averaged) Navier–Stokes equations, discretized with a finite volume method for cell‐centered, colocated variables on unstructured grids. A matrix‐free implementation is presented, and special attention is given to the treatment of the stabilization matrix to maintain a compact stencil suitable for unstructured grids. We find SIMPLER preconditioning to be robust and efficient for academic test cases and industrial test cases. Compared with the classical SIMPLE solver, SIMPLER preconditioning reduces the number of nonlinear iterations by a factor 5–20 and the CPU time by a factor 2–5 depending on the case. The flow around a ship hull at Reynolds number 2E9, for example, on a grid with cell aspect ratio up to 1:1E6, can be computed in 3 instead of 15 h.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
In the following paper, we present a consistent Newton–Schur (NS) solution approach for variational multiscale formulations of the time‐dependent Navier–Stokes equations in three dimensions. The main contributions of this work are a systematic study of the variational multiscale method for three‐dimensional problems and an implementation of a consistent formulation suitable for large problems with high nonlinearity, unstructured meshes, and non‐symmetric matrices. In addition to the quadratic convergence characteristics of a Newton–Raphson‐based scheme, the NS approach increases computational efficiency and parallel scalability by implementing the tangent stiffness matrix in Schur complement form. As a result, more computations are performed at the element level. Using a variational multiscale framework, we construct a two‐level approach to stabilizing the incompressible Navier–Stokes equations based on a coarse and fine‐scale subproblem. We then derive the Schur complement form of the consistent tangent matrix. We demonstrate the performance of the method for a number of three‐dimensional problems for Reynolds number up to 1000 including steady and time‐dependent flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The present paper is devoted to the study of design optimization strategies in the particular framework of complex computational fluid dynamics. Genetic algorithms are chosen as the optimization strategy, thanks to their robustness and flexibility. Two ways are explored to improve the behaviour of genetic algorithms in order to increase the efficiency of the search. First, approximated pre‐evaluations based on artificial neural networks are used to benefit from the knowledge acquired from the problem and to reduce the number of expensive evaluations by the flow solver required at each generation. Then, a hybridization technique is proposed for the final local search, which is performed by a deterministic method. These approaches are validated and applied on two‐ and three‐dimensional problems, involving Reynolds‐averaged Navier–Stokes computations with near‐wall turbulence modeling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes three different time integration methods for unsteady incompressible Navier–Stokes equations. Explicit Euler and fractional‐step Adams–Bashford methods are compared with an implicit three‐level method based on a steady‐state SIMPLE method. The implicit solver employs a dual time stepping and an iteration within the time step. The spatial discretization is based on a co‐located finite‐volume technique. The influence of the convergence limits and the time‐step size on the accuracy of the predictions are studied. The efficiency of the different solvers is compared in a vortex‐shedding flow over a cylinder in the Reynolds number range of 100–1600. A high‐Reynolds‐number flow over a biconvex airfoil profile is also computed. The computations are performed in two dimensions. At the low‐Reynolds‐number range the explicit methods appear to be faster by a factor from 5 to 10. In the high‐Reynolds‐number case, the explicit Adams–Bashford method and the implicit method appear to be approximately equally fast while yielding similar results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
A new boundary element method is presented for steady incompressible flow at moderate and high Reynolds numbers. The whole domain is discretized into a number of eight-noded cells, for each of which the governing boundary integral equation is formulated exclusively in terms of velocities and tractions. The kernels used in this paper are the fundamental solutions of the linearized Navier–Stokes equations with artificial compressibility. Significant attention is given to the numerical evaluation of the integrals over quadratic boundary elements as well as over quadratic quadrilateral volume cells in order to ensure a high accuracy level at high Reynolds numbers. As an illustration, square driven cavity flows are considered for Reynolds numbers up to 1000. Numerical results demonstrate both the high convergence rate, even when using simple (direct) iterations, and the appropriate level of accuracy of the proposed method. Although the method yields a high level of accuracy in the primary vortex region, the secondary vortices are not properly resolved. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we formulate a level set method in the framework of finite elements‐semi‐Lagrangian methods to compute the solution of the incompressible Navier–Stokes equations with free surface. In our formulation, we use a quasi‐monotone semi‐Lagrangian scheme, which is both unconditionally stable and essentially non oscillatory, to compute the advective terms in the Navier–Stokes equations, the transport equation and the equation of the reinitialization stage for the level set function. The method we propose is quite robust and flexible with regard to the mesh and the geometry of the domain, as well as the magnitude of the Reynolds number. We illustrate the performance of the method in several examples, which range from a benchmark problem to test the volume conservation property of the method to the flow past a NACA0012 foil at high Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
We introduce a stabilized finite element method for the 3D non‐Newtonian Navier–Stokes equations and a parallel domain decomposition method for solving the sparse system of nonlinear equations arising from the discretization. Non‐Newtonian flow problems are, generally speaking, more challenging than Newtonian flows because the nonlinearities are not only in the convection term but also in the viscosity term, which depends on the shear rate. Many good iterative methods and preconditioning techniques that work well for the Newtonian flows do not work well for the non‐Newtonian flows. We employ a Galerkin/least squares finite element method, with stabilization parameters adjusted to count the non‐Newtonian effect, to discretize the equations, and the resulting highly nonlinear system of equations is solved by a Newton–Krylov–Schwarz algorithm. In this study, we apply the proposed method to some inelastic power‐law fluid flows through the eccentric annuli with inner cylinder rotation and investigate the robustness of the method with respect to some physical parameters, including the power‐law index and the Reynolds number ratios. We then report the superlinear speedup achieved by the domain decomposition algorithm on a computer with up to 512 processors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The applicability and performance of the lattice‐Boltzmann (LB) and meshless point collocation methods as CFD solvers in flow and conjugate heat transfer processes are investigated in this work. Lid‐driven cavity flow and flow in a slit with an obstacle including heat transfer are considered as case studies. A comparison of the computational efficiency accuracy of the two methods with that of a finite volume method as implemented in a commercial package (ANSYS CFX, ANSYS Inc., Canonsburg, PA) is made. Utilizing the analogy between heat and mass transfer, an advection–diffusion LB model was adopted to simulate the heat transfer part of the slit flow problem followed by a rigorous mapping of the mass transfer variables to the heat transfer quantities of interest, thus circumventing the need for a thermal LB model. Direct comparison among the results of the three methods revealed excellent agreement over a wide range of Reynolds and Prandtl number values. Furthermore, an integrated computational scheme is proposed, utilizing the rapid convergence of the LB model in the flow part of the conjugate heat transfer problem with that of the meshless collocation method for the heat transfer part. The meshless treatment remains sufficiently rapid even for conduction‐controlled processes in contrast to the LB method, which is very rapid in the convection‐controlled case only. A single, common computational grid, composed of regularly distributed nodes is used, saving significant computational and coding time and ensuring convergence of the discrete Laplacian operator in the heat transfer part of the computations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In the lattice Boltzmann method (LBM), the mechanism of fluid–solid interaction can be effectively captured by appropriately enforcing the no‐slip conditions in shear direction, and bounce‐back of the non‐equilibrium distribution portion in the normal direction at fluid–solid interfaces. Among various solid–fluid interaction schemes being proposed for LBM in recent decades, two simple fluid–solid interaction methods—the momentum exchange algorithm (MEA) and the immersed boundary scheme (IBS)—were developed based on the above concept. In this paper, MEA and IBS are implemented in a D2Q9 LBGK system and applied to measure the wall correction factors of drag force upon a stationary circular particle midway in the Poiseuille channel flow at very low Reynolds number and drag coefficients at low to moderate Reynolds numbers. MEA and IBS are also employed to compare the fluid‐induced torque over the cylinder in the Taylor–Couette flow, and the steady velocity of a particle settling under the influence of gravity inside a tube. The above experiments show that IBS seems to be more accurate and less demanding on lattice resolution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The purpose of this study is to perform a numerical application of the shape optimization formulation of a body located in an incompressible viscous flow field. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint condition by the Lagrange multiplier method and the adjoint equations using adjoint variables corresponding to the state equations. As a numerical study, the drag force minimization problem in the steady Stokes flow, which means approximated equation of the low Reynolds number Navier–Stokes equation is carried out. After that, the unsteady Navier–Stokes flow is analysed. As the minimization algorithm, the steepest descent method is successfully applied. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号