首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Aromatic poly(o-hydroxy amide)s having inherent viscosities of 0.6–2.2 dL/g were readily synthesized by the low-temperature solution polycondensation of N,N′,O-tris(trimethylsilyl)-substituted 2,4-diaminophenol with aromatic dicarboxylic acid chlorides in various organic solvents. The viscosity values were much higher than those of the polymers obtained by a conventional method using parent 2,4-diaminophenol. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide)s at 280°C under vacuum afforded the corresponding aromatic polyamide-benzoxazoles. Most of the poly(o-hydroxy amide)s dissolved readily in amide-type solvents, whereas the polyamide-benzoxazoles were quite insoluble in organic solvents. The polyamide-benzoxazoles, which gave yellow, transparent, and tough films, had glass transition temperatures of 260–300°C and were stable up to 400°C in air.  相似文献   

2.
The diamine 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, containing symmetric, bulky di-tert-butyl substituents and a flexible ether unit, was synthesized and used to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.32–1.27 dL g−1. Most of these polyamides, except II a , II d , and II e , showed an amorphous nature and dissolved in polar solvents and less polar solvents. Polyamides derived from 4,4′-sulfonyldibenzoic acid, 4,4′-(hexafluoro-isopropylidene)dibenzoic acid, and 5-nitroisophthalic acid were even soluble in a common organic solvent such as THF. Most polyamide films could be obtained by casting from their N,N-dimethylacetamide (DMAc) solutions. The polyamide films had a tensile strength range of 49–78 MPa, an elongation range at break of 3–5%, and a tensile modulus range of 1.57–2.01 GPa. These polyamides had glass transition temperatures ranging between 253 and 276°C, and 10% mass loss temperatures were recorded in the range 402–466°C in nitrogen atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1069–1074, 1998  相似文献   

3.
A new aromatic dicarboxylic acid, 1,4-bis (p-carboxyphenoxy)naphthyl ( 3 ), was synthesized by the reaction of p-fluorobenzonitrile with 1,4-naphthalenediol, followed by hydrolysis. Aromatic polyamides having inherent viscosities of 1.27–2.22 dL/g were prepared by the triphenyl phosphite activated polycondensation of diacid 3 with various aromatic diamines. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including N,N-dimethyl-acetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and m-cresol. Transparent, tough, and flexible films of these polymers could be cast from the DMAc or NMP solutions. The cast films had tensile strengths ranging from 64–104 MPa, elongations-at-break from 6 to 10%, and initial moduli from 1.52 to 2.14 GPa. These polyamides had glass transition temperatures in the range of 195 to 240°C. Almost all polymers were thermally stable up to 400°C, with 10% weight loss being recorded above 480°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2273–2280, 1997  相似文献   

4.
Two fluorine-containing aromatic polybenzothiazoles were synthesized by direct polycondensation of 4,4′-(hexafluoroisopropylidene)dibenzoic acid and tetrafluoroterephthalic acid with 2,5-diamino-1,4-benzenedithiol dihydrochloride using phosphorus pentoxide/methanesulfonic acid or polyphosphoric acid as both condensing agent and solvent. The effect of introduction of fluorine atom on the synthesis and properties of these polymers was discussed in detail. The perfluoroisopropylidene unit-containing polybenzothiazole was amorphous, and showed good solubility in organic solvents, excellent mechanical properties, and high thermal stability. The perfluoro-p-phenylene unit-containing polybenzothiazole was crystalline, and exhibited lyotropic behavior in concentrated sulfuric acid. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 429–435, 1998  相似文献   

5.
A new method for the synthesis of aromatic polysulfides has been developed by the polycondensation of S,S′-bis(trimethylsilyl)-substituted aromatic dithiols with activated aromatic dihalides. The solution polycondensation of three S-silylated aromatic dithiols with bis(4-chloro-3-nitrophenyl) sulfone afforded readily aromatic polysulfides having inherent viscosities of 0.7 dL/g, and the polymerization with bis(4-fluorophenyl) sulfone gave the polymers with viscosity values of 0.3 dL/g. The silylation method was compared advantageously with a conventional route using parent dithiols and activated aromatic dihalides.  相似文献   

6.
A new regioselective synthesis of metalinked aromatic polyketones was achieved for the first time. New metaconnected aromatic polyketones with inherent viscosities of up to 0.49 dL/g were regioselectively synthesized by the solution polycondensation of metasubstituted bis(arylsilane)s with aromatic dicarboxylic acid chlorides in the presence of aluminum chloride in 1,2‐dichloroethane along with the elimination of chlorotrimethylsilane. The polycondensation proceeded through aromatic electrophilic ipso‐substitution. The metalinked aromatic polyketones had considerably lower glass‐transition temperatures and 10% weight‐loss temperatures than those of their counterpart paracatenated aromatic polyketones. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1428–1434, 2003  相似文献   

7.
Novel aromatic polyamides, having inherent viscosities of 0.76-2.31 dL/g, were synthesized by the low temperature solution polycondensation of a new highly phenylated diamine monomer having an imidazolinone group, 1,3-bis(4-aminophenyl)-4,5-diphenylimidazoline-2-one (TPIDA), with various aromatic diacid chlorides. All the polymers were amorphous, and most of the polyamides were readily soluble in organic solvents such as N-methyl–2-pyrrolidone, N,N-dimethylacetamide (DMAc), and m-cresol. Flexible and tough films could be prepared from the DMAc solutions of these soluble aromatic polyamides. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyamides were in the range of 275–315°C and 430–505°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
A new synthetic method for aromatic polyketones was developed through Friedel–Crafts polycondensation of bis(arylsilane) monomers with aromatic dicarboxylic acid chlorides. The solution polycondensation of these monomer pairs in the presence of aluminum chloride in 1,2‐dichloroethane readily afforded aromatic polyketones having inherent viscosities up to 0.37 dL/g with the elimination of chlorotrimethylsilane. The polycondensation proceeded through aromatic electrophilic ipso substitution, the mechanism of which is very similar to that of normal Friedel–Crafts acylation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2729–2735, 2002  相似文献   

9.
A new highly phenylated heterocyclic diamine, 3,4-bis(4-aminophenyl)-2,5-diphenylfuran, was synthesized in three steps from 4–-nitrodeoxybenzoin. The low temperature solution polycondensation of the diamine with various aromatic diacid chlorides afforded tetraphenylfuran-containing aromatic polyamides with inherent viscosities of 0.2–0.8 dL/g. Copolyterephthalamides were obtained from the diamine and 4,4′-oxydianiline. The polyamides were generally soluble in a wide range of solvents that included N,N-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine, and m-cresol. Glass transition temperatures of the polyamides and copolyamides ranged from 302–342°C, and 10% weight loss was observed above 480°C in nitrogen.  相似文献   

10.
Novel aromatic polyimides containing symmetric, bulky di-tert-butyl substituents unit were synthesized from 1,4-bis(4-aminophenoxy)2,5-di-tert-butylbenzene (BADTB) and various aromatic tetracarboxylic dianhydrides by the conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide to give poly(amic acid)s, followed by cyclodehydration to polyimides. The diamine was prepared through the nucleophilic displacement of 2,5-di-tert-butylhydroquinone with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.83–1.88 dL g−1. Most of the polyimides formed transparent, flexible, and tough films. Tensile strength and elongation at break of the BADTB-based polyimide films ranged from 68–93 MPa and 7–11%, respectively. The polyimide derived from 4,4′-hexafluoro-isopropylidenebisphathalic anhydride had better solubility than the other polyimides. These polyimides had glass transition temperatures between 242–298°C and 10% mass loss temperatures were recorded in the range of 481–520°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1527–1534, 1997  相似文献   

11.
A new polymer-forming monomer, 3,4-bis(4-aminophenyl)-2,5-diphenylpyrrole, was synthesized in three steps starting from 4′-nitrodeoxybenzoin. Tetraphenylpyrrole-containing aromatic polyamides and copolyamides were prepared from the diamine with various aromatic diacid chlorides and from a mixture of the diamine and 4,4′-oxydianiline with terephthaloyl chloride, respectively. The resultant polymers had inherent viscosities in the 0.3–1.8 dL/g range and were generally soluble in various organic solvents including N,N-dimethylacetamide and m-cresol. They have glass transition temperatures in the range of 306–333°C and showed no weight loss below 380°C in both air and nitrogen atmospheres.  相似文献   

12.
The synthesis of a highly soluble, 2,5-disubstituted poly(p-phenylene vinylene) with pendant side chains containing ether groups was accomplished by a dehydrochlorination route. Specific interactions of the oxygen-containing side chains with the solvent are presumably responsible for the high solubility of the polymer, especially in protogenic solvents. The polymer microstructure was characterized by 1H- and 13C-NMR. The polymer showed solvatochromic properties when dissolved in a variety of solvents. The relatively high molecular weight (Mn = 17,000) permitted the fabrication of free-standing films. The electrical conductivity of iodine-doped films was approximately 2 × 10–2 S cm–1. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
1,2-Bis(4-aminophenoxy)benzene was synthesized in two steps by the preparation of 1,2-bis(4-itrophenoxy)benzene from 1,2-dihydroxybenzene (catechol) and p-chloronitrobenzene and subsequent reduction with a 10% Pd-C catalyst and hydrazine hydrate. Aromatic polyamides with an inherent viscosity in the range of 1.08–2.00 dL/g were prepared by the direct polycondensation of this diamine with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Most of the polymers formed were soluble in aprotic solvents such as NMP and N,N-methylacetamide (DMAc), and afforded transparent, flexible, and tough films upon casting from DMAc solutions. Most of the cast films showed obvious yield points in their stress-strain curves and had tensile strength among 64–89 MPa, elongation at break among 5–23%, and initial modulus in 1.7–2.5 GPa. The glass transition temperatures (Tg) of these polymers were in the range of 207–278°C, and the 10% weight loss temperatures were recorded above 475°C in nitrogen and above 452°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
A series of 2-(2-aminothiazol-5-yl)-3,6-dichloro-5-diethylaminoethenyl-1,4-benzoquinones was synthesized from 2-(2-aminothiazol-5-yl)-3,5,6-trichloro-1,4-benzoquinones using acetaldehyde and diethylamine in toluene solution. Refluxing these compounds with substituted thioureas in acetonitrile in the presence of hydrochloric acid gives the corresponding 2,5-bis(2-aminothiazol-5-yl)-3,6-dichlorohydroquinones which can be oxidized to the target products with ferric chloride in aqueous DMF.Riga Technical University, Riga LV-1048, LatviaTranslated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 835–839, June, 2000  相似文献   

15.
16.
New soluble aromatic polyamides with inherent viscosities of 1.0–1.7 dL/g were prepared by the low temperature solution polycondensation of 2,5-bis(4-aminophenyl)—3,4-diphenylthiophene, bis(4-aminophenyl) ether, and aromatic diacid chlorides in N,N-dimethylacetamide. The polyamides and copolyamides are generally soluble in amide-type solvents. They have glass transition temperatures in the range of 280–325°C and showed no weight loss below 390°C on thermogravimetry curves in both air and nitrogen atmospheres.  相似文献   

17.
Novel, soluble aromatic polyamides and copolyamides containing tetraphenylethylene units were prepared by the low temperature solution polycondensation of 1,1-bis(4-aminophenyl)-2,2-diphenylethylene and aromatic diamines with various aromatic diacid chlorides. Highmolecular-weight polyamides having inherent viscosities of 0.6–1.5 dL/g and number-average molecular weight above 21000 were obtained quantitatively. These polymers were readily soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide and gave pale yellow, transparent, flexible films by casting from DMAc solution. The polymers had glass transition temperatures between 290 and 340°C, and started to lose weight around 400°C, with 10% weight loss being recorded at about 470°C in air.  相似文献   

18.
From the viewpoint of the suppression of the petroleum consumption, aromatic poly(ether ketone)s (PEKs) were prepared by the nucleophilic aromatic substitution polymerization of 2,5‐bis(4‐fluorobenzoyl)furan (BFBF) synthesized from biomass and aromatic bisphenols. The model reaction of BFBF and p‐methoxyphenol revealed that BFBF possessed enough reactivity for the nucleophilic aromatic substitution reactions. The polymerizations of BFBF and aromatic bisphenols afforded high molecular weight polymers with good yields in N‐methylpyrrolidone and diphenyl sulfone for several hours. The longer polymerization time brought about the formation of insoluble parts in any solvents and reduction of molecular weight. The obtained PEKs were thermoplastics and exhibited good thermal stability, mechanical properties, and chemical resistance comparable to common high‐performance polymers. The thermal properties were tunable with the structure of bisphenols. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3094–3101  相似文献   

19.
20.
Aromatic polyurea-amides having inherent viscosities of 0.36–0.67 dL/g were synthesized by the low temperature solution polycondensation of new N,N′-dimethyl-N,N′-bis(aminophenyl)ureas with various aromatic dicarboxylic acid chlorides. All the polymers were amorphous, and most of them were soluble in a variety of organic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide (DMAc), m-cresol, and pyridine. Some of the polymers could be cast from the DMAc solutions into transparent and flexible films having good tensile properties. The glass transition temperatures of the polyurea-amides obtained from the bis(4-aminophenyl)-substituted ureas were 244–272°C. The temperatures of 10% weight loss under nitrogen of the polymers were in the range of 430 and 480°C. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号