首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper reports on a numerical study of turbulent confined jets in a conical duct with a 5° divergence. The flow has a large ratio of jet to ambient velocities at the entrance so that it gives rise to strong recirculation. The calculations are carried out with a general finite volume method designed for calculating incompressible elliptic flows with complex boundaries. Turbulence is simulated by the standard κ–? model. The sensitivity of the solution to numerical discretization errors is examined using three convection schemes, i.e. hybrid central/upwind differencing, QUICK and SOUCUP, on two grids consisting of 68 × 50 and 102 × 82 points respectively. An examination is also made of the influence of inlet boundary conditions on the predicted flow field. The computed results are compared with experimental data for mean axial velocity, turbulent shear stress and turbulent kinetic energy profiles. It is shown that the calculations reproduce the essential features of the flow observed in the experiments.  相似文献   

2.
Numerical simulations have been undertaken for the benchmark problem of natural convection flow in a square cavity. The control volume method is used to solve the conservation equations for laminar and turbulent flows for a series of Rayleigh numbers (Ra) reaching values up to 1010. The k-? model has been used for turbulence modelling with and without logarithmic wall functions. Uniform and non-uniform (stretched) grids have been employed with increasing density to guarantee accurate solutions, especially near the walls for high Ra-values. ADI and SIP solvers are implemented to accelerate convergence. Excellent agreement is obtained with previous numerical solutions, while some discrepancies with others for high Ra-values may be due to a possibly different implementation of the wall functions. Comparisons with experimental data for heat transfer (Nusselt number) clearly demonstrates the limitations of the standard k-? model with logarithmic wall functions, which gives significant overpredictions.  相似文献   

3.
Experimental data on the development of an aerofoil wake in a curved stream are compared with calculations based on the k-ε model of turbulence with standard constants and with the model constant Cμ dependent on the local curvature. The mean velocity profile is asymmetric, the half-width of the wake is more on the inner side of the curved duct than on the outer side, and the turbulent shear stress decreases rapidly on the outer side. The standard k-ε model is able to satisfactorily reproduce this behaviour. Making Cμ dependent on the local radius improves the agreement on the inner side but slightly worsens it on the outer side.  相似文献   

4.
A control volume finite element method that uses a triangular grid has been applied for solving confined turbulent swirling flows. To treat the velocity-pressure coupling, the vorticity-streamfunction formulation has been used. For turbulence effects the k-? model has been adopted. Consistent with the use of wall functions in the near-wall regions, a boundary condition for the calculation of the vorticity at computational boundaries is proposed and used effectively. The discretized equations are obtained by making use of an exponential interpolation function. Its use has been beneficial in reducing numerical diffusion. Comparisons of the current predictions with available experimental and numerical data from the literature showed generally fair agreement.  相似文献   

5.
The fully elliptic Reynolds-averaged Navier–Stokes equations have been used together with Lam and Bremhorst's low-Reynolds-number model, Chen and Patel's two-layer model and a two-point wall function method incorporated into the standard k-? model to predict channel flows and a backward-facig step flow. These flows enable the evaluation of the performance of different near-wall treatments in flows involving streamwise and normal pressure gradients, flows with separation and flows with non-equilibrium turbulence characteristics. Direct numerical simulation (DNS) of a channel flow with Re =3200 further provides the detailed budgets of each modelling term of the k and ?-transport equations. Comparison of model results with DNS data to evaluate the performance of each modelling term is also made in the present study. It is concluded that the low-Reynolds-number model has wider applicability and performs better than the two-layer model and wall function approaches. Comparison with DNS data further shows that large discrepancies exist between the DNS budgets and the modelled production and destruction terms of the ? equation. However, for simple channel flow the discrepancies are similar in magnitude but opposite in sign, so they are cancelled by each other. This may explain why, even when employing such an inaccurately modelled ?-equation, one can still predict satisfactorily some simple turbulent flows.  相似文献   

6.
An improved low-Reynolds-number k-? model has been formulated and tested against a range of DNS (direct numerical simulation) and experimental data for channel and complex shear layer flows. The model utilizes a new form of damping function adopted to account for both wall proximity effects and viscosity influences and a more flexible damping argument based on the gradient of the turbulent kinetic energy on the wall. Additionally, the extra production of the inhomogeneous part of the viscous dissipation near a wall has been added to the dissipation equation with significantly improved results. The proposed model was successfully applied to the calculation of a range of wall shear layers in zero, adverse and favourable pressure gradients as well as backward-facing-step separated flows.  相似文献   

7.
This paper reports numerical modelling of impinging jet flows using Rodi and Malin corrections to the k–ϵ turbulence model, carried out using the PHOENICS finite volume code. Axisymmetric calculations were performed on single round free jets and impinging jets and the effects of pressure ratio, height and nozzle exit velocity profile were investigated numerically. It was found that both the Rodi and Malin corrections tend to improve the prediction of the hydrodynamic field of free and impinging jets but still leave significant errors in the predicted wall jet growth. These numerical experiments suggest that conditions before impingement significantly affect radial wall jet development, primarily by changing the wall jet's initial thickness.  相似文献   

8.
This paper is devoted to the computation of turbulent flows by a Galerkin finite element method. Effects of turbulence on the mean field are taken into account by means of a k-? turbulence model. The wall region is treated through wall laws and, more specifically, Reichardt's law. An inlet profile for ? is proposed as a numerical treatment for physically meaningless values of k and ?. Results obtained for a recirculating flow in a two-dimensional channel with a sudden expansion in width are presented and compared with experimental values.  相似文献   

9.
In this work a solution has been derived for the motion of an incompressible liquid with a temperature dependent viscosity in a conical diffuser. The inertia and diffusion terms are neglected in the equations of motion and heat conduction. It is assumed that the temperature of the diffuser wall is inversely proportional to the spherical radius. It is shown that the stream function and temperature are uniformly convergent series, the terms of which satisfy an infinite system of normal differential equations. An investigation has been made of the behavior of the flow pattern and the effects of a temperature gradient on the radial velocity component. The method has been used to resolve the flow of a liquid between two coaxial cones.  相似文献   

10.
The aim of this work is to present a new numerical method to compute turbulent flows in complex configurations. With this in view, a k-? model with wall functions has been introduced in a mixed finite volume/finite element method. The numerical method has been developed to deal with compressible flows but is also able to compute nearly incompressible flows. The physical model and the numerical method are first described, then validation results for an incompressible flow over a backward-facing step and for a supersonic flow over a compression ramp are presented. Comparisons are performed with experimental data and with other numerical results. These simulations show the ability of the present method to predict turbulent flows, and this method will be applied to simulate complex industrial flows (flow inside the combustion chamber of gas turbine engines). The main goal of this paper is not to test turbulence models, but to show that this numerical method is a solid base to introduce more sophisticated turbulence model.  相似文献   

11.
The PHOENICS code has been used to model the flow field surrounding subsonic and underexpanded jets impinging on a ground plane in the presence of a cross-flow, for cases with both a fixed ground plane and a ‘rolling road’. The standard k-ε turbulence model is used, without correction factors. It is confirmed that this overpredicts the free jet entrainment rate; the wall jet spreading rate is slightly underpredicted but the initial thickness is too high. Agreement with experiment is, nevertheless, much better than for previous calculations, showing the importance of the extent of the grid used. The ground vortex formed in cross-flow is shown to move with varying effective velocity ratio and with rolling road operation in the same manner as experimentally observed. Ground vortex self-similarity is also accurately predicted with the numerical modelling.  相似文献   

12.
Numerical studies of turbulent flow in an axisymmetric 45° expansion combustor and bifurcated diffuser are presented. The Navier-Stokes equations incorporating a k–? model were solved in a non-orthogonal curvillinear co-ordinate system. A zonal grid method, wherein the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal boundaries required special handling. Boundary overlap and interpolating techniques were used and an adjustment of the flow variables was required to assure conservation of mass flux. Three finite differencing methods—hybrid, quadratic upwind and skew upwind—were used to represent the convection terms. Results were compared with existing experimental data. In general, good agreement between predicted and measured values was obtained.  相似文献   

13.
The development of asymmetric wake behind an aerofoil in turbulent incompressible flow has been computed using finite volume scheme for solving two-dimensional Navier-Stokes equations along with the k-ε model of turbulence. The results are compared with available experimental data. It is observed that the computed shift of the point of minimum velocity with distance is sensitive to the prescribed value of the normal component of velocity at the trailing edge of the aerofoil. Making the model constant Cu as a function of streamline curvature and changing the production term in the equation for ε, has only marginal influence on the results.  相似文献   

14.
Details are given of a study to obtain experimental data in an idealized environment for the purpose of evaluating the corresponding computational predictions and which supplement parallel measurements made in actual packaged air-conditioning units. The system consisted of a purpose-built low-speed wind tunnel with a working section constructed to reproduce particular features of the real units. In the experiment, both the mean velocity profiles and turbulence properties of the flow are obtained from triple-hot-wire anemometry measurements. A numerical model, based on finite volume methodology, was used to obtain the solution of the Reynolds-averaged Navier–Stokes equations for incompressible isothermal flow. The Reynolds stress terms in the equations are calculated using the standard k–ϵ model and second-moment closure (Reynolds stress) models. The accuracy of the two models was evaluated against the experimental measurements made 10 mm downstream of a baffle. The results show that the standard k–ϵ model gave the better agreement except in regions of strong recirculation. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
A penalty function, finite volume method is described for two-dimensional laminar and turbulent flows. Turbulence is modelled using the k-? model. The governing equations are discretized and the resulting algebraic equations are solved using both sequential and coupled methods. The performance of these methods is gauged with reference to a tuned SIMPLE-C algorithm. Flows considered are a square cavity with a sliding top, a plane channel flow, a plane jet impingement and a plane channel with a sudden expansion. A sequential method is employed, which uses a variety of dicretization practices, but is found to be extremely slow to converge; a coupled method, evaluated using a variety of matrix solvers, converges rapidly but, relative to the sequential approach, requires larger memory.  相似文献   

16.
17.
Fully developed incompressible turbulent flow in a conical diffuser having a total divergence angle of 8° and an area ratio of 4∶1 has been simulated by ak-ε turbulence model with high Reynolds number and adverse pressure gradient. The research has been done for pipe entry Reynolds numbers of 1.16×105 and 2.93×105. The mean flow velocity and turbulence energy are predicted successfully and the advantage of Boundary Fit Coordinates approach is discussed. Furthermore, thek-ε turbulence model is applied to a flow in a conical diffuser having a total divergence angle of 30° with a perforated screen. A simplified mathematical model, where only the pressure drop is considered, has been used for describing the effect of the perforated screen. The optimum combination of the resistance coefficient and the location of the perforated screen is predicted for high diffuser efficiency or the uniform velocity distribution.  相似文献   

18.
Handler, Hendricks and Leighton have recently reported results for the direct numerical simulation (DNS) of a turbulent channel flow at moderate Reynolds number. These data are used to evaluate the terms in the exact and modelled transport equations for the turbulence kinetic energy k and the isotropic dissipation function ε. Both modelled transport equations show significant imbalances in the high-shear region near the channel walls. The model for the eddy viscosity is found to yield distributions for the production terms which do not agree well with the distributions calculated from the DNS data. The source of the imbalance is attributed to the wall-damping function required in eddy viscosity models for turbulent flows near walls. Several models for the damping function are examined, and it is found that the models do not vary across the channel as does the damping when evaluated from the DNS data. The Lam-Bremhorst model and the standard van Driest model are found to give reasonable agreement with the DNS data. Modification of the van Driest model to include an effective origin yields very good agreement between the modelled production and the production calculated from the DNS data, and the imbalance in the modelled transport equations is significantly reduced.  相似文献   

19.
Large-eddy simulations (LES) of a planar, asymmetric diffuser flow have been performed. The diverging angle of the inclined wall of the diffuser is chosen as 8.5°, a case for which recent experimental data are available. Reasonable agreement between the LES and the experiments is obtained. The numerical method is further validated for diffuser flow with the diffuser wall inclined at a diverging angle of 10°, which has served as a test case for a number of experimental as well as numerical studies in the literature (LES, RANS). For the present results, the subgrid-scale stresses have been closed using the dynamic Smagorinsky model. A resolution study has been performed, highlighting the disparity of the relevant temporal and spatial scales and thus the sensitivity of the simulation results to the specific numerical grids used. The effect of different Reynolds numbers of the inflowing, fully turbulent channel flow has been studied, in particular, Re b  = 4,500, Re b  = 9,000 and Re b  = 20,000 with Re b being the Reynolds number based on the bulk velocity and channel half width. The results consistently show that by increasing the Reynolds number a clear trend towards a larger separated region is evident; at least for the studied, comparably low Reynolds-number regime. It is further shown that the small separated region occurring at the diffuser throat shows the opposite behaviour as the main separation region, i.e. the flow is separating less with higher Re b . Moreover, the influence of the Reynolds number on the internal layer occurring at the non-inclined wall described in a recent study has also been assessed. It can be concluded that this region close to the upper, straight wall, is more distinct for larger Re b . Additionally, the influence of temporal correlations arising from the commonly used periodic turbulent channel flow as inflow condition (similar to a precursor simulation) for the diffuser is assessed.  相似文献   

20.
A numerical solution for shallow-water flow is developed based on the unsteady Reynolds-averaged Navier–Stokes equations without the conventional assumption of hydrostatic pressure. Instead, the non-hydrostatic pressure component may be added in regions where its influence is significant, notably where bed slope is not small and separation in a vertical plane may occur or where the free-surface slope is not small. The equations are solved in the σ-co-ordinate system with semi-implicit time stepping and the eddy viscosity is calculated using the standard k–ϵ turbulence model. Conventionally, boundary conditions at the bed for shallow-water models only include vertical diffusion terms using wall functions, but here they are extended to include horizontal diffusion terms which can be significant when bed slope is not small. This is consistent with the inclusion of non-hydrostatic pressure. The model is applied to the 2D vertical plane flow of a current over a trench for which experimental data and other numerical results are available for comparison. Computations with and without non-hydrostatic pressure are compared for the same trench and for trenches with smaller side slopes, to test the range of validity of the conventional hydrostatic pressure assumption. The model is then applied to flow over a 2D mound and again the slope of the mound is reduced to assess the validity of the hydrostatic pressure assumption. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号