共查询到10条相似文献,搜索用时 18 毫秒
1.
Virgil Percec Ailton De Souza Gomes Myongsoo Lee 《Journal of polymer science. Part A, Polymer chemistry》1991,29(11):1615-1622
A convenient method for the synthesis of 11-[(4-cyano-4′- trans-α-cyanostilbene) oxy]- undecanyl vinyl ether ( 6 ) which is the first member of a new class of mesogenic monomers is described. The polymerization of 6 initiated with CF3SO3H/S (CH3)2 in methylene chloride at 0°C proceeds through a living cationic mechanism leading to polymers with controllable molecular weights and polydispersities narrower than 1.10. The mesomorphic behavior of both 6 and poly( 6 )s with various molecular weights was determined by using a combination of thermal optical polarized microscopy and differential scanning calorimetry. 6 is only crystalline. Poly( 6 )s with degrees of polymerization from 4 to 30 exhibit an enatiotropic smectic A mesophase and side chain crystallization. 相似文献
2.
V. Percec M. Lee H. Jonsson 《Journal of polymer science. Part A, Polymer chemistry》1991,29(3):327-337
The synthesis and living cationic polymerization of 11-[(4-cyano-4′-biphenyl)oxy]-undecanyl vinyl ether ( 6 – 11 ) are described. The mesomorphic phase behavior of poly( 6 – 11 ) with different degrees of polymerization was compared to that of 6 – 11 and of 11-[(4-cyano-4′-biphenyl) oxy] undecanyl ethyl ether ( 8 – 11 ) which is the model compound of the monomeric structural unit of poly( 6 – 11 ). 6 – 11 displays a monotropic SA and a monotropic nematic mesophase while 8 – 11 an enantiotropic SA mesophase. Poly( 6 – 11 ) with low degrees of polymerization exhibits an enantiotropic SA mesophase. Poly( 6 – 8 ) with high degrees of polymerization displays an enantiotropic SX (i. e., an unidentified smectic phase) and an enantiotropic SC mesophase. These results demonstrate that the transformation of the nematic mesophase of the monomer into a smectic mesophase after polymerization, occurs at the level of monomeric structural unit. 相似文献
3.
4.
Hiroaki Shimomoto Shokyoku Kanaoka Sadahito Aoshima 《Journal of polymer science. Part A, Polymer chemistry》2012,50(19):4137-4144
A series of poly(2‐methoxyethyl vinyl ether)s with narrow molecular weight distributions and with perfectly defined end groups of varying hydrophobicities was successfully synthesized by base‐assisting living cationic polymerization. The end group was shown to greatly affect the temperature‐induced phase separation behavior of aqueous solutions (lower critical solution temperature‐type phase separation) or organic solutions (upper critical solution temperature‐type phase separation) of the polymers. The cloud points were also influenced largely by the molecular weight and concentration of the polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
5.
Shokyoku Kanaoka Mitsuo Sawamoto Toshinobu Higashimura Jongok Won Chuanbin Pan Timothy P. Lodge Masaaki Fujiwara David M. Hedstrand Donald A. Tomalia 《Journal of Polymer Science.Polymer Physics》1995,33(4):527-535
The sizes and shapes of star-shaped poly(vinyl ether)s, prepared by living cationic polymerization, were studied by dynamic light scattering and molecular mechanics-based computer simulation. The hydrodynamic radii (Rh) of star poly(isobutyl vinyl ether)s (4a; M?w = 2.2 × 104 ? 1.7 × 105) determined by dynamic light scattering were in the range from 30 to 90 Å in tetrahydrofuran or ethyl acetate. Consistent with the expected multiarmed architecture of 4a, the radius for a given number (f) of arms per molecule increased with the degree of polymerization [DP(arm)] of the arms, and for a fixed DP(arm), the radius increased with f. The relationship between arm number f and the “shrinking” factor h [Rh(star)/Rh(linear)] was consistent with multibranched structures for the star polymers. These results are supported by those for the molecular weight itself; the apparent weight-average molecular weights by size-exclusion chromatography are less than the corresponding absolute values by static light scattering. The dependence of h on f suggests some degree of asymmetry in the star shape. Similar results were also obtained by the computer simulation of potential energy-minimized conformations of the arms, which implied almost spherical but slightly asymmetric shapes. The computer simulation also demonstrated that the star polymer (4b) with pendant hydroxyl groups in the arms is smaller in size than the corresponding alkyl (isobutyl) (4a) with the identical arm number and arm degree of polymerization. © 1995 John Wiley & Sons, Inc. 相似文献
6.
Masahiko Minoda Tatsuya Shimizu Sadao Miki Jin Motoyanagi 《Journal of polymer science. Part A, Polymer chemistry》2013,51(4):786-792
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
7.
Costas S. Patrickios Clive Forder Steven P. Armes Norman C. Billingham 《Journal of polymer science. Part A, Polymer chemistry》1998,36(14):2547-2554
Water-soluble amphiphilic diblock copolymers were synthesized by the living cationic polymerization of methyl vinyl ether (hydrophilic block) and its subsequent termination with n-alcohols of chain lengths varying from one to eight, and three n-alkyl carboxylic acids with 10, 12, and 18 carbon atoms. Additionally, water and ethylene glycol were tested as terminating agents. The extent of the functionalization was determined using 1H NMR spectroscopy. The cloud points of 1% w/w aqueous solutions of the polymers as determined by turbidimetry decreased from 32 to 21°C as the number of carbon atoms of the terminating agent increased. Aqueous GPC revealed micellization of the stearic acid-terminated block copolymer, while the other block copolymers existed mainly as unimers. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2547–2554, 1998 相似文献
8.
Eri Yoshida Atsutoshi Sugita 《Journal of polymer science. Part A, Polymer chemistry》1998,36(12):2059-2068
Synthesis of poly(styrene-b-tetrahydrofuran (THF)-b-styrene) triblock copolymers was performed by transformation from living cationic into living radical polymerization, using 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO) as a transforming agent. Sodium 4-oxy-TEMPO, derived from 4-hydroxy-TEMPO, reacted with the living poly(THF), which was prepared by cationic polymerization of THF using trifluoromethanesulfonic acid anhydride as an initiator, resulting in quantitative formation of the poly(THF) with TEMPO at both the chain ends. The resulting polymers were able to serve as a polymeric counter radical for the radical polymerization of styrene by benzoyl peroxide, to give the corresponding triblock copolymer in quantitative efficiency. The polymerization was found to proceed in accordance with a living mechanism, because the conversion of styrene linearly increased over time, and the molar ratio of styrene to THF units in the copolymer also increased as a result of increasing the conversion. The TEM pictures demonstrated that the resulting copolymers promoted microphase segregation. It was found that the films of these copolymers showed contact angles intermediate between those of poly(THF) and of polystyrene. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2059–2068, 1998 相似文献
9.
Sadahito Aoshima Hiroshi Oda Eiichi Kobayashi 《Journal of polymer science. Part A, Polymer chemistry》1992,30(11):2407-2413
Living cationic polymerization of alkoxyethyl vinyl ether [CH2?CHOCH2CH2OR; R: CH3 (MOVE), C2H5 (EOVE)] and related vinyl ethers with oxyethylene units in the pendant was achieved by 1-(isobutoxy)ethyl acetate ( 1 )/Et1.5AlCl1.5 initiating system in the presence of an added base (ethyl acetate or THF) in toluene at 0°C. The polymers had a very narrow molecular weight distribution (M?w/M?n = 1.1–1.2) and the M?n proportionally increased with the progress of the polymerization reaction. On the other hand, the polymerization by 1 /EtAlCl2 initiating system in the presence of ethyl acetate, which produces living polymer of isobutyl vinyl ether, yielded the nonliving polymer. When an aqueous solution of the polymers thus obtained was heated, the phase separation phenomenon was clearly observed in each polymer at a definite critical temperature (Tps). For example, Tps was 70°C for poly(MOVE), and 20°C for poly(EOVE) (1 wt % aqueous solution, M?n ~ 2 × 104). The phase separation for each case was quite sensitive (ΔTps = 0.3–0.5°C) and reversible on heating and cooling. The Tps or ΔTps was clearly dependent not only on the structure of polymer side chains (oxyethylene chain length and ω-alkyl group), but also on the molecular weight (M?n = 5 × 103-7 × 104) and its distribution. © 1992 John Wiley & Sons, Inc. 相似文献
10.
Virgil Perce Hiroji Oda 《Journal of polymer science. Part A, Polymer chemistry》1995,33(14):2359-2374
The synthesis and “living” cationic polymerization of 3-fluoro-4′-(11-vinyloxyundecany-loxy)-4-biphenylyl (2R,3S)-2-fluoro-3-methylpentanoate ( 12-11 ) and 3-fluoro-4′-(8-vi-nyloxyoctyloxy)-4-biphenylyl (2R,3S)-2-fluoro-3-methylpentanoate ( 12-8 ) are presented. Poly ( 12-11 )s and poly ( 12-8 )s with degrees of polymerization from 4.0 to 16.5 and poly-dispersities ≤ 1.13 have been synthesized and characterized by differential scanning cal-orimetry (DSC) and thermal optical polarized microscopy. Over the entire range of molecular weights poly ( 12-11 )s and poly ( 12-8 )s exhibit an enantiotropic SA and an unidentified SX phase. In addition, regardless of its molecular weight, poly ( 12-8 ) exhibits a S*c phase in between the SA and Sx phases. Poly ( 12-11 ) and poly ( 12-8 ) show lower transition tem-peratures and broader temperature ranges of all their mesophases as compared to the corresponding polymers without a fluorine atom on the biphenyl group. The role of the connecting group between the biphenyl and chiral group of the mesogenic unit on the phase behavior of these polymers is also discussed. Copolymers of 12-8 with (2R,3S)-2-fluoro-3-methylpentyl 4′-(11-vinyloxyundecanyloxy)biphenyl-4-carboxylate ( 13-11 ) {i.e., poly-[( 12-8 )-co-( 13-11 )] (X/Y), where X/Y represents the molar ratio of monomer 12-8 to monomer 13-11 } with DP of ca. 11 and polydispersities lower than 1.23 were also syn-thesized and characterized. Their SA and S*c mesophases exhibit continuous dependences of composition and this support the assignment of the mesophases exhibited by poly ( 12-8 ). © 1995 John Wiley & Sons, Inc. 相似文献