首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical analysis of three-dimensional Newtonian extrudate swell   总被引:3,自引:0,他引:3  
The present paper considers the problem of predicting extrudate shapes from asymmetrical dies for Newtonian fluids. The flow is fully three-dimensional and an exploration of finite elements is made with a view to finding accurate, stable and economical schemes. A number of elements are compared and we conclude that some of the Fortin elements are most useful on the grounds of computational overhead and solution accuracy. These are used to investigate some symmetrical (square dies) and asymmetrical (unequal lip) planar and general L-shaped die flows. Finally, we show that in an unconstrained extrudate the final shape must be such that particles describe a helix in space; special cases include circular flow and rectilinear flow.  相似文献   

2.
Three-dimensional non-isothermal extrusion flows   总被引:3,自引:0,他引:3  
A three-dimensional (3-D) non-isothermal study of viscous free-surface flows with exponential dependence of viscosity on temperature is presented. The effects of non-isothermal conditions and/or geometry on the extrudate shape are investigated with a fully three-dimensional finite element/Galerkin formulation. Apart from the well known thermally induced extrudate swelling phenomenon, bending and distortion of the extrudate may occur because of temperature differences and/or geometric asymmetries. A temperature difference across the die can be imposed by heating or cooling the die walls, but can also arise because of asymmetric viscous heat generation due to the die geometry. Temperature differences affect velocity profiles because of the temperature dependence of viscosity and lead to extrudate bending, an effect known as kneeing in the fiber spinning industry. It is also shown numerically and confirmed experimentally that the die geometry induces extrudate bending even in the case of isothermal Newtonian flows.  相似文献   

3.
Let us call a direct extrusion problem (DEP) the problem of finding the shape of the extrudate coming out of a die of prescribed shape. An implicit finite element formulation of the DEP which is geometrically general and for which a Newton-Raphson technique can be implemented has recently been proposed by Legat and Marchal. However, the problem posed to the die designer is frequently the inverse extrusion problem (IEP), i.e. finding the die shape which produces an extrudate of prescribed shape. This paper presents an extension of our original method for solving the IEP which avoids the ‘trial-and-error’ iteration on the die geometry itself. The advantage of the formulation lies in its capability to handle complex geometrics and in its low cost, because the CPU time and memory required to solve the IEP are almost identical to those of the DEP. We present benchmark results for squares and rectangles and new results obtained for geometries involving multiple corners. For an octagonal shape we also consider the case of a power-law fluid. For all results presented in this paper, surface tension has not been included.  相似文献   

4.
The goal of this paper is to present a flexible multibody formulation for Euler-Bernoulli beams involving large displacements. This method is based on a discretisation of internal and kinetic energies. The beam is represented by its line of centroids and each section is oriented by a frame defined by three Euler angles. We apply a finite element formulation to describe the evolution of these angles along the neutral fibre and describe the internal energy. The kinetic energy is approximated as the one of two rigid bars tangent to the neutral fibre at the ends of the beam. We derive the equations of motion from a Lagrange formulation. These equations are solved using the Newmark method or/and the Newton-Raphson technique. We solve some very classic problems taken from the literature as the curved beam presented by Simo [Simo, J. C., ‘A three-dimensional finite-strain rod model. the three-dimensional dynamic problem. Part I’, Comput. Meths. Appl. Mech. Engrg. 49, 1985, 55–70; Simo, J. C. and Vu-Quoc, L., ‘A three-dimensional finite-strain rod model, Part II: Computationals aspects’, Comput. Meths. Appl. Mech. Engrg. 58, 1988, 79–116] and Lee [Lee, Kisu, ‘Analysis of large displacements and large rotations of three-dimensional beams by using small strains and unit vectors’, Commun. Numer. Meth. Engrg. 13, 1997, 987–997] or the rotational rod presented by Avello [Avello, A., Garcia de Jalon, J., and Bayo, E., ‘Dynamics of flexible multibody systems using cartesian co-ordinates and large displacement theory’, Int. J. Num. Methods in Engineering 32, 1991, 1543–1563] and Simo [Simo, J. C. and Vu-Quoc, L., ‘On the dynamics of flexible beams under large overall motions – the planar case. Part I’ Jour. of Appl. Mech. 53, 1986, 849–854; Simo, J. C. and Vu-Quoc, L., ‘On the dynamics of flexible beams under large overall motions – the planar case. Part II’, Jour. of Appl. Mech. 53, 1986, 855–863].  相似文献   

5.
This paper presents a numerical technique for solving three-dimensional free surface problems in extrusion applications. The method is fully implicit in the sense that a Newton-Raphson scheme is applied on all variables, and geometrically general. In particular, the die section shape may be complex and contains multiple corners: very few restrictions apply on the mesh generation because the method does not require the nodes to be located on straight lines (spines). A clear distinction is introduced between the directions associated with the kinematic condition and the remeshing rules. As a difference with respect to earlier publications, these concepts are handled separately. Only Stokes problems are solved in this paper and we have not introduced surface tension. Therefore corners in the die section propagate discontinuities in the extrudate shape, an a method for relocating corners without losing the quadratic convergence of the scheme is presented. Data structures used for the implementation are briefly discussed. We present results on the extrusion of various profiles, including a rectangular die (a benchmark problem) and various complex sections containing multiple corners.  相似文献   

6.
The steady extrusion of a Newtonian liquid through an annular die and its development outside and away from the die are studied under the influence of gravitational and surface tension forces. The finite element method (FEM) is used for the simulations. The positions of the inner and outer free surface profiles are calculated simultaneously with the other unknown fields, i.e. using the Newton–Raphson iterative scheme. The effects of three relevant parameters, i.e. the Reynolds, the Stokes and the capillary numbers, on the shape of the annular film are studied for two values of the inner to the outer diameter ratio, corresponding to a thick and a thin annular film respectively. A one‐dimensional model for the extrudate region, valid for thin annular films, is also presented, and its predictions are compared with the two‐dimensional finite element calculations. Despite the fact that it is valid away from the die exit, the one‐dimensional model predicts satisfactorily the effects of the Stokes and capillary numbers. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Extending multigrid concepts to the calculation of complex compressible flow is usually not straightforward. This is especially true when non-embedded grid hierarchies or volume agglomeration strategies are used to construct a gradation of unstructured grids. In this work, a multigrid method for solving second-order PDE's on stretched unstructured triangulations is studied. The finite volume agglomeration multigrid technique originally developed for solving the Euler equations is used (M.-H. Lallemand and A. Dervieux, in Multigrid Methods, Theory, Applications and Supercomputing, Marcel Dekker, 337–363 (1988)). First, a directional semi-coarsening strategy based on Poisson's equation is proposed. The second-order derivatives are approximated on each level by introducing a correction factor adapted to the semi-coarsening strategy. Then, this method is applied to solve the Poisson equation. It is extended to the 2D Reynolds-averaged Navier–Stokes equations with appropriate boundary treatment for low-Reynolds number turbulent flows. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a continuous finite element solution for fluid flows with interfaces. The method is founded on the sign-preserving flux correction transport methodology and extends nonoscillatory finite element algorithm capabilities to predict interface motion efficiently. The procedure is composed of three main stages, along the lines of the conservative level set method: transport of phase function, reconstruction of phase function, and solution of equations of motion of two incompressible fluids. The flux correction technique takes action on the three steps. Limiting process incorporates a straightforward refinement to remove global mass residuals present in the earliest version of the algorithm. This is of particular importance in the transport step. Moreover, new method retains the efficacy of the original. To reconstruct the phase function after transport, a novel nonlinear (and conservative) streamlined diffusion equation is proposed, with an anisotropic diffusivity comprising artificial compression and diffusive fluxes along interface displacements direction. A substantial reduction of unphysical overshoots along the interface is reached by an improved bound estimation that includes interface information. Complete operation of the correction algorithm for two incompressible fluids flows requires two pressure solutions. We explore a reduced form to circumvent this extra burden. Numerical experiments verify the formulation by reproducing stringent benchmarks both for transport/reinitialization and for two-fluid interface propagation.  相似文献   

9.
The time-dependent Navier–Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity–pressure–vorticity–temperature–heat-flux ( u –P–ω–T– q ) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.  相似文献   

10.
Zusammenfassung Es wird eine modifizierte Form des Weissenberg-Effekts untersucht, wobei sich die viskoelastische Flüssigkeit in einem kreiszylindrischen Gefäß befindet, an dessen Boden eine Scheibe rotiert. Normalspannungsdifferenzen rufen in der Flüssigkeit eine Strömung hervor, die auf der Drehachse von unten nach oben gerichtet ist, und die freie Oberfläche wölbt sich nahe der Achse nach außen. Unter der Voraussetzung hinreichend langsamer Strömung wird eine Theorie zweiter Ordnung entwickelt. Sie führt auf elliptische Randwertaufgaben zweiter bzw. vierter Ordnung für das Geschwindigkeitsfeld der Primärströmung in Umfangsrichtung und für die Stromfunktion der Sekundärströmung in der Meridianebene. Ihnen werden äquivalente Variationsaufgaben zugeordnet und mit der Methode der Finiten Elemente numerisch gelöst. Die Gestalt der freien Oberfläche setzt sich bei geeigneter Normierung aus drei universellen Formfunktionen zusammen, die für verschiedene Füllhöhen berechnet werden. Im experimentellen Teil wird nachgewiesen, daß durch entsprechende Messungen der Auslenkung des Flüssigkeitsspiegels die unteren Grenzwerte der beiden Normalspannungskoeffizienten bestimmt werden können. Das Rheometer besitzt den Vorzug, daß die Oberflächenspannung der Flüssigkeit die Meßgröße nur unwesentlich beeinflußt.
Some kind of Weissenberg effect is considered where the viscoelastic fluid, being within a cylindrical vessel, is set in motion by a rotating disc near the tank bottom. Because of normal-stress differences within the fluid a secondary flow arises which is directed upwards near the axis of symmetry, and thus the free surface is deformed. Under the assumption of sufficiently slow flow a second-order theory is developed. It leads to second-order and fourth-order elliptic boundary value problems for the velocity field in azimuthal direction and for the stream function of the secondary flow, respectively. Equivalent variational problems are formulated and solved by the method of finite elements. When normalized appropriately, the shape of the free surface consists of three shape functions, which are independent of any material constants. It is shown by corresponding experiments, that the zero-shear-rate normal-stress coefficients can be determined by measuring the displacement of the free surface. In this rheometer, the surface tension of the fluid causes only insignificant influence on the quantity to be measured.

Symbole C H [—] Verhältnis der FormfunktionenF 2/F1 - f [—] die Sekundärströmung treibende radiale Volumenkraft, dimensionslos - F 0, F1, F2 [—] universelle Formfunktionen - Fr [—] Froude-Zahl - g [m s–2] Erdbeschleunigung - h [—] Auslenkung der Oberfläche, aufr 0 bezogen - H [—] dimensionslose Füllhöhe - K [—] Kennzahl der Kapillarität - r,z [m] Zylinderkoordinaten - r, z [—] dimensionslose Koordinaten - r 0 [m] Radius des Meßbehälters - Re [—] Reynolds-Zahl - v r, v, vz [m s–1] Geschwindigkeitskomponenten - We 1, We2 [—] Weissenberg-Zahlen - [Pa s] Nullviskosität der Flüssigkeit - [°C] Temperatur - [m] Kapillarlänge - v 1, v2 [Pa s2] untere Grenzwerte der Normalspannungskoeffizienten - [kg m–3] Dichte der Flüssigkeit - [N m–1] Oberflächenspannung - [—] Zylinderkoordinate - [—] Dissipationsfunktion der Sekundärströmung, dimensionslos - [—] Stromfunktion, dimensionslos - [—] örtliche Winkelgeschwindigkeit, dimensionslos - [s–1] Winkelgeschwindigkeit der Scheibe  相似文献   

11.
Results are presented for the numerical simulation of vortex-induced vibrations (VIVs) of a cylinder at low Reynolds numbers (Re). A stabilized space–time finite-element formulation is utilized to solve the incompressible flow equations in primitive variables. The cylinder, of low nondimensional mass (m*=10), is free to vibrate in, both, the transverse and in-line directions. To investigate the effect of Re and reduced natural frequency, Fn, two sets of computations are carried out. In the first set of computations the Reynolds number is fixed (=100) and the reduced velocity (U*=1/Fn) is varied. Hysteresis, in the response of the cylinder, is observed at the low- as well as high-end of the range of reduced velocity for synchronization/lock-in. In the second set of computations, the effect of Reynolds number (50Re500) is investigated for a fixed reduced velocity (U*=4.92). The effect of the Reynolds number is found to be very significant for VIVs. While the vortex-shedding mode at low Re is 2S (two single vortices shed per cycle), at Re300 and larger, the P+S mode of vortex shedding (a single vortex and one pair of counter-rotating vortices are released in each cycle of shedding) is observed. This is the first time that the P+S mode has been observed for a cylinder undergoing free vibrations. This change of vortex-shedding mode is hysteretic in nature and results in a very large increase in the amplitude of in-line oscillations. Since the flow ceases to remain two-dimensional beyond Re200, it remains to be seen whether the P+S mode of shedding can actually be observed in reality for free vibrations.  相似文献   

12.
Accurate prediction of extrudate (die) swell in polymer melt extrusion is important as this helps in appropriate die design for profile extrusion applications. Extrudate swell prediction has shown significant difficulties due to two key reasons. The first is the appropriate representation of the constitutive behavior of the polymer melt. The second is regarding the simulation of the free surface, which requires special techniques in the traditionally used Eulerian framework. In this paper we propose a method for simulation of extrudate swell using an Arbitrary Lagrangian Eulerian (ALE) technique based finite element formulation. The ALE technique provides advantages of both Lagrangian and Eulerian frameworks by allowing the computational mesh to move in an arbitrary manner, independent of the material motion. In the present method, a fractional-step ALE technique is employed in which the Lagrangian phase of material motion and convection arising out of mesh motion are decoupled. In the first step, the relevant flow and constitutive equations are solved in Lagrangian framework. The simpler representation of polymer constitutive equations in a Lagrangian framework avoids the difficulties associated with convective terms thereby resulting in a robust numerical formulation besides allowing for natural evolution of the free surface with the flow. In the second step, mesh is moved in ALE mode and the associated convection of the variables due to relative motion of the mesh is performed using a Godunov type scheme. While the mesh is fixed in space in the die region, the nodal points of the mesh on the extrudate free surface are allowed to move normal to flow direction with special rules to facilitate the simulation of swell. A differential exponential Phan Thien Tanner (PTT) model is used to represent the constitutive behavior of the melt. Using this method we simulate extrudate swell in planar and axisymmetric extrusion with abrupt contraction ahead of the die exit. This geometry allows the extrudate to have significant memory for shorter die lengths and acts as a good test for swell predictions. We demonstrate that our predictions of extrudate swell match well with reported experimental and numerical simulations.  相似文献   

13.
Both the axisymmetric and the planar Newtonian extrudate‐swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
A novel control volume finite element method with adaptive anisotropic unstructured meshes is presented for three-dimensional three-phase flows with interfacial tension. The numerical framework consists of a mixed control volume and finite element formulation with a new P1DG-P2 elements (linear discontinuous velocity between elements and quadratic continuous pressure between elements). A “volume of fluid” type method is used for the interface capturing, which is based on compressive control volume advection and second-order finite element methods. A force-balanced continuum surface force model is employed for the interfacial tension on unstructured meshes. The interfacial tension coefficient decomposition method is also used to deal with interfacial tension pairings between different phases. Numerical examples of benchmark tests and the dynamics of three-dimensional three-phase rising bubble, and droplet impact are presented. The results are compared with the analytical solutions and previously published experimental data, demonstrating the capability of the present method.  相似文献   

15.
This paper considers the streamline‐upwind Petrov–Galerkin (SUPG) method applied to the unsteady compressible Navier–Stokes equations in conservation‐variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, and the second‐order accurate time discretization are presented. The numerical method is discussed in detail. The performance of the algorithm is then investigated by considering inviscid flow past a circular cylinder. Validation of the finite element formulation via comparisons with experimental data for high‐Mach number perfect gas laminar flows is presented, with a specific focus on comparisons with experimentally measured skin friction and convective heat transfer on a 15° compression ramp. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical investigation of laminar flow over a three-dimensional backward-facing step is presented with comparisons with detailed experimental data, available in the literature, serving to validate the numerical results. The continuity constraint method, implemented via a finite element weak statement, was employed to solve the unsteady three-dimensional Navier–Stokes equations for incompressible laminar isothermal flow. Two-dimensional numerical simulations of this step geometry underestimate the experimentally determined extent of the primary separation region for Reynolds numbers Re greater than 400. It has been postulated that this disagreement between physical and computational experiments is due to the onset of three-dimensional flow near Re ≈ 400. This paper presents a full three-dimensional simulation of the step geometry for 100⩽ Re⩽ 800 and correctly predicts the primary reattachment lengths, thus confirming the influence of three-dimensionality. Previous numerical studies have discussed possible instability modes which could induce a sudden onset of three-dimensional flow at certain critical Reynolds numbers. The current study explores the influence of the sidewall on the development of three-dimensional flow for Re greater than 400. Of particular interest is the characterization of three-dimensional vortices in the primary separation region immediately downstream of the step. The complex interaction of a wall jet, located at the step plane near the sidewall, with the mainstream flow reveals a mechanism for the increasing penetration (with increasing Reynolds number) of three-dimensional flow structures into a region of essentially two-dimensional flow near the midplane of the channel. The character and extent of the sidewall-induced flow are investigated for 100⩽Re⩽ 800. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is dedicated to the numerical simulation of nuclear components (cores and steam generators) by fictitious domain methods. The fictitious domain approach consists in immersing the physical domain under study in a Cartesian domain, called the fictitious domain, and in performing the numerical resolution on this fictitious domain. The calculation times are then efficiently reduced by the use of fast solvers. In counterpart, one has to handle with an immersed boundary, generally non‐aligned with the Cartesian mesh, which can be non‐trivial. The two fictitious domain methods compared here on industrial simulations and developed by Ramière et al. deal with an approximate immersed interface directly derived from the uniform Cartesian mesh. All the usual immersed boundary conditions (Dirichlet, Robin, Neumann), possibly mixed, are handled through a unique formulation of the fictitious problem. This kind of approximation leads to first‐order methods in space that exhibit a good ratio of the precision of the approximate solution over the CPU time, which is very important for industrial simulations. After a brief recall of the fictitious domain method with spread interface (Ramière et al., CMAME 2007) and the fictitious domain method with immersed jumps (Ramière et al., JCP 2008), we will focus on the numerical results provided by these methods applied to the energy balance equation in a steam generator. The advantages and drawbacks of each method will be pointed out. Generally speaking, the two methods confirm their very good efficiency in terms of precision, convergence, and calculation time in an industrial context. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Two principal squeeze flow modes are investigated for yield stress and Newtonian materials squeezed by a constant force, F, between plates of equal or unequal diameters. In mode A, the material fills the space between the plates and is extruded at their periphery as their separation decreases. Experiments are described to measure the contribution to F from the extrudate. In mode B, all the material remains in contact with the planes of the plates as their separation decreases; there is no extrudate. The results of mode B experiments agree closely with the predictions of theory and give rheological parameters in fair agreement with those measured by the rotational vane method. The material properties and extrusion behaviour which complicate mode A experiments are discussed.  相似文献   

19.
A type of 3 node triangular element is constructed by the Quasi-conforming method, which may be used to solve the equation of a type of inverse problem of wave propagation after Laplace transformation ΔuA 2 u=0. The strains in the element are approximated by an exponential function and the string-net function between neighbouring elements is approximated by one dimensional general solution of the equation. Furthermore the strain field satisfies the equation, and therefore in the derivation of the element formulation, no shape function is needed. In this sense, it is a kind of hybrid element. Compared with the ordinary linear triangular element, the new one features higher precision with coarse meshes. Some numerical tests are presented. The project is supported by the National Natural Science Foundation of China.  相似文献   

20.
A high‐order computational tool based on spectral and spectral/hp elements (J. Fluid. Mech. 2009; to appear) discretizations is employed for the analysis of BiGlobal fluid instability problems. Unlike other implementations of this type, which use a time‐stepping‐based formulation (J. Comput. Phys. 1994; 110 (1):82–102; J. Fluid Mech. 1996; 322 :215–241), a formulation is considered here in which the discretized matrix is constructed and stored prior to applying an iterative shift‐and‐invert Arnoldi algorithm for the solution of the generalized eigenvalue problem. In contrast to the time‐stepping‐based formulations, the matrix‐based approach permits searching anywhere in the eigenspace using shifting. Hybrid and fully unstructured meshes are used in conjunction with the spatial discretization. This permits analysis of flow instability on arbitrarily complex 2‐D geometries, homogeneous in the third spatial direction and allows both mesh (h)‐refinement as well as polynomial (p)‐refinement. A series of validation cases has been defined, using well‐known stability results in confined geometries. In addition new results are presented for ducts of curvilinear cross‐sections with rounded corners. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号