首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Anionic iron(0) tetracarbonyl with terminal phenyltellurolate ligand PhTe?, [PhTeFe(CO)4]?, has been synthesized and characterized. The title compound was obtained by addition of (PhTe)2 to [PPN][HFe(CO)4] THF solution dropwise. [PPN][PhTeFe(CO)4] crystallizes in the monoclinic space group C c, with a = 16.119(4) Å, b = 13.141(3) Å, c = 19.880(8) Å, β = 93.04(3)°, V = 4205(2) Å3, and Z = 4. The [PhTeFe(CO)4]? anion is a trigonal-bipyramidal complex in which the phenyltellurolate ligand occupies an axial position with Fe-Te bond length 2.630(5) Å and the Fe-Te-C(Ph) angle is 103.4(5)°. The neutral iron(0)-telluroether compound, (PhTeMe)Fe(CO)4, was prepared by alkylation of the [PhTeFe(CO)4]?. Protonation of [PhTeFe(CO)4]?and reaction of H2Fe(CO)4 and PhTe)2 ultimately lead to formation of the known dimer Fe2(μ-TePh)2(CO)6 and H2.  相似文献   

2.
Oxidative addition of diphenyl disulfide to the coordinatively unsaturated [Mn(CO)5]? led to the formation of low-spin, six-coordinate cis-[Mn(CO)4(SPh)2]?. The complex cis-[PPN][Mn(CO)4(SPh)2] crystallized in monoclinic space group P21/c with a = 9.965(2) Å, b = 24.604(5) Å, c = 19.291(4) Å, β = 100.05(2)°, V = 4657(2)Å3, and Z = 4; final R = 0.036 and Rw = 0.039. Thermal transformation of cis-[Mn(CO)4(SPh)2]? to [(CO)3Mn(μ-SPh)3Mn(CO)3]? was completed overnight in THF at room temperature. Additionally, reaction of [Mn(CO)5]? and PhSH in 1:2 mole ratio also led to cis-[PPN](Mn(CO)4(SPh)2]. Presumably, oxidative addition of PhSH to [Mn(CO)4]? was followed by a Lewis acid-base reaction to form cis-[Mn(CO)4(SPh)2]? with evolution of H2.  相似文献   

3.
Reactions in the gas phase of the 13- and 15-electron radical anions [Cr(CO)3]? ˙ and [Cr(CO)4]? ˙ with a series of 27 aldehydes, ketones, esters and ethers have been examined. Sequential alkane eliminations and metal-bonded CO ligand displacements were the principal reactions identified for the RCHO/[Cr(CO)3]? ˙ systems with the latter reaction also common to the RCHO/[Cr(CO)4]? ˙ systems. While [Cr(CO)4]? ˙ was generally unreactive towards ketones R · R'CO, the principal products identified for [Cr(CO)3]? ˙/ketone reactions were the metal-decarbonylated species, respectively [R · R'CO · Cr(CO)x]? ˙ with x = 0–3, and [R · (R' - H2)CO · Cr(CO)2]? ˙. The reaction of [Cr(CO)3]? ˙ with esters RCOOR' proceeds via metal insertion into the alkoxy C? O bond to give end products of the type [R'O · Cr · R(CO)2]? and [R'O? Cr(CO)3]? while the sole ionic products of dialkyl ether/[Cr(CO)3]? ˙ reactions were identified as the alkoxytricarbonylchromium species [RO · Cr(CO)3]?.  相似文献   

4.
Addition of NOBF4 to fac-[PPN][Fe(CO)3(TePh)3] in THF at ambient temperature results in formation of Fe2(μ-TePh)2(NO)4l Fe2(?TePh)2(CO)6 and organic products. Methylation of fac-[PPN][Fe(CO)3- (TePh)3] by Mel or [Me3O][BF4] leads to the known dimer Fe2(μ.-TePh)2(CO)6 and organic products. Fe2(μ-TePh)2(NO)4 crystallizes in the orthorhombic space group P bca, with a = 12.701(5) Å, b = 6.7935(16) Å, c = 21.299(9) Å, V = 1837.8(11) Å3, and Z = 4. The core geometry of Fe2(μ-TePh)2(NO)4 is best described as a Fe2Te2 planar rhombus with Te-Fe-Te bond angle 112.09(4)°. A Fe-Fe bond (length 2.827(2) Å) is proposed for Fe2(μ-TePh)2(NO)4 on the basis of the 18-electron rule. The iron atom adopts a distorted tetrahedral geometry with acute bridge Fe-Te-Fe angles 67.91(3)°, and bridging Fe-Te bond of length 2.53(1) Å.  相似文献   

5.
Diphenyldichalcogenides (PhE)2 (E = Te, Se) react with Fe(0)-phenylchalcogenolate [PPN] [PhEFe(CO)4] to yield the products of oxidative addition, Fe(II)-mixed-phenylchalcogenolate fac- [PPN][Fe(CO)3(TePh)n(ScPh)3-n] (n = 1, 2). Reactions of [PPN][REFe(CO)4] (E=Se, R=Me; E=S, R=Et) and diphenyldichalcogenides yielded ligand-exchange products [PPN][PhEFe(CO)4] (E=Te, Se, S). The compounds [Fe(CO)3(TePh)(ScPh)2]? (l) and [Fe(CO)3(TePh)2 (2) crystallize in the isomorphous monoclinic space group C2/e, with a = 32.035(8), b = 11.708(6), c = 28.909(6) Å, Z = 8, R = 0.048, and Rw = 0.044 (1); with a = 32.089(5), b= 11.745(2), c = 28.990(8) Å, Z = 8, R = 0.048, and Rw = 0.048 (2). The complexes 1 and 2 crystallize as discrete cations of PPN+ and anions of [Fe(CO)3(TcPh)u(ScPh)3-n] (n=1, 2), and one half solvent molecule THF. The geometry around Fe(II) is a distorted octahedron with three carbonyl groups and three phenylchalcogenolate ligands occupying facial positions.  相似文献   

6.
The reaction of equimolar amounts of [Co(CO)3(NO)] and [PPN]CN, PPN+ = (PPh3)2N+, in THF at room temperature resulted in ligand substitution of a carbonyl towards the cyanido ligand presumably affording the complex salt PPN[Co(CO)2(NO)(CN)] as a reactive intermediate species which could not be isolated. Applying the synthetic protocol using the nitrosyl carbonyl in excess, the title reaction afforded unexpectedly the novel complex salt PPN[Co2(μ-CN)(CO)4(NO)2] ( 1 ) in high yield. Because of many disorder phenomena in crystals of 1 the corresponding NBu4+ salt of 1 has been prepared and the molecular structure of the dinuclear metal core in NnBu4[Co2(μ-CN)(CO)4(NO)2] ( 2 ) was determined by X-ray crystal diffraction in a more satisfactory manner. In contrast to the former result, the reaction of [PPN]SCN with [Co(CO)3(NO)] yielded the mononuclear complex salt PPN[Co(CO)2(NO)(SCN-κN)] ( 3 ) in good yield whose molecular structure in the solid was even determined and its composition additionally confirmed by spectroscopic means.  相似文献   

7.
Reaction of the iridium tetracarbonylate [PPN][Ir(CO)4] (1a) with triphenylcyclopropenyl tetrafluoroborate [C3Ph3][BF4] afforded two dinuclear species Ir2(CO)4(μ,η12-C3Ph3)(μ,η23-C3Ph3) (2) and Ir2(CO)4(μ,η44-C6Ph6) (3a) resulting from the ring opening and in the latter case, coupling of the resulting acyclic, propenyl ligands. The analogous reaction with [PPN][Rh(CO)4] (1b) afforded only the rhodium analogue for 3a.  相似文献   

8.
The cis-[Mn(CO)4(TePh)2]?, similar to bidentate ligand PhTe(CH2)3TePh, acts as a “chelating metalloligand” for the synthesis of metallic tellurolate compounds. The reaction of cis[Mn(CO)4(TePh)2]? with BrMn(CO)5 in THF leads to a mixture of products[(CO)3,BrMn(μ-TePh)2Mn(CO)4]? (1) and Mn2(μ-TePh)2(CO)g (2). Complex 1 crystallizes in the triclinic space group Pl? with a = 11.309(3) Å, b = 14.780(5) Å, c = 19.212(6) Å, a = 76.05(3)° β = 72.31(3)°, γ = 70.41(3)° V = 2848(2) Å3, Z = 2. Final R = 0.034 and Rw = 0.035 resulting from refinement of 10021 total reflections with 677 parameters, Dropwise addition of (MeTe)2 to a solution of [Me3O][BF4] in CH3CN leads to formation of [Me2TeTeMe][BF4], a potential MeTe+ donor ligand. In contrast to oxidative addition of diphenyl ditelluride to [Mn(CO)s]? to give cis-[Mn(CO)4(TePh)2]? which was thermally transformed into [(CO)3Mn(μ-TePh)3Mn(CO)3]?, reaction of [Mn(CO)5]?with [Me2TeTeMe]+ proceeded to give the monomeric species MeTeMn(CO)5 as initial product which was then dimerized into Mn2(μ-TeMe)2(CO)g (4).  相似文献   

9.
The thiocarbonyl-bridged complex Cp2Fe2(CO)3CS is obtained by the reaction of CpFe(CO)2? and (PhO)2CS in THF. Infrared and NMR spectra show that the compound exists in solution in interconverting cis and trans forms, but that the isomerization occurs more slowly than for the carbonyl analog [CpFe(CO)2]2. Most reagents which cleave [CpFe(CO)2]2, such as Br2, HgCl2, and O2/HBF4, do not give simple cleavage reactions with Cp2Fe2(CO)3CS. Reductive cleavage of Cp2Fe2(CO)3CS with Na(Hg) gives the thiocarbonyl anion CpFe(CO)(CS)?, which reacts with Ph3SnCl to form CpFe(CO)(CS)SnPh3. Methylamine reacts with CpFe(CO)(CS)SnPh3 to give CpFe(CO)(CNMe)SnPh3, while ethylenediamine gives the carbene complexes CpFe(CO)C(N2C2H6)SnPh3. The preparation of another new carbene complex, [CpFe(CO)2C(OMe)2]PF6, is also described.  相似文献   

10.
Unusual observations of the photochemistry of CpFe(CO)2Co(CO)4 (Cp = η5-C5H5) are presented. In low temperature matrices (i.e. Ar at 10 K) there are two photochemical pathways (i) reversible CO loss to form CpFeCo(CO)5 and (ii) heterophotolysis leading, in the presence of excess CO, to in situ formation of [CpFe(CO)3]+ and [Co(CO)4]? ions. In N2-doped matrices, a dinitrogen substitution product, CpFeCo(CO)3(N2)(μ-CO)2 is formed. All products are identified from their IR spectra.  相似文献   

11.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   

12.
The synthesis of [Ir2Rh2(CO)12] ( 1 ) by the literature method gives a mixture 1 /[IrRh3(CO)12] which cannot be separated using chromatography. The reaction of [Ir(CO)4]? with 1 mol-equiv. of [Rh(CO)2(THF)2]+ in THF gives pure 1 in 61% yield. Crystals of 1 are highly disordered, unlike those of its derivative [Ir2Rh2(CO)52-CO)3(norbornadiene)2] which were analysed using X-ray diffraction. The ground-state geometry of 1 in solution has three edge-bridging CO's on the basal IrRh2 face of the metal tetrahedron. Time averaging of CO's takes place above 230 K. The CO site exchange of lowest activation energy is due to one synchronous change of basal face, as shown by 2D- and VT-13C-NMR. Substitution of CO by X? in 1 takes place at a Rh-atom giving [Ir2Rh2(CO)82-CO)3X]? (X = Br, I). Substitution by bidentate ligands gives [Ir2Rh2(CO)72-CO)34-L)] (L = norbornadiene, cycloocta-1,5-diene) where the ligand L is chelating a Rh-atom of the basal IrRh2 face. Carbonyl substitution by tridentate ligands gives [Ir2Rh2(CO)62-CO)33-L)] (L = 1,3,5-trithiane, tripod) with L capping the triangular basal face of the metal tetrahedron. Carbonyl scrambling is also observed in these substituted derivatives of 1 and is mainly due to the rotation of three terminal CO's about a local C3 axis on the apical Ir-atom.  相似文献   

13.
Complexes Containing Antimony Ligands: [tBu2(Cl)SbW(CO)5], [tBu2(OH)SbW(CO)5], O[SbPh2W(CO)5]2, E[SbMe2W(CO)5]2 (E = Se, Te), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] Syntheses of [tBu2(Cl)SbW(CO)5] ( 1 ), [tBu2(OH)SbW(CO)5] ( 2 ), O[SbPh2W(CO)5]2 ( 3 ), Se[SbMe2W(CO)5]2 ( 4 ), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] ( 5 ) Te[SbMe2W(CO)5]2 ( 6 ) and crystal structures of 1 – 5 are reported.  相似文献   

14.
Preparation and Electrochemistry of [Nb(OTeF5)6]? and [Ta(OTeF5)6]? Complexes Nb(OTeF5)5 and Ta(OTeF5)5 react with Cs[OTeF5], [Et4N][OTeF5], and [(n-Bu)4N][OTeF5] to the corresponding Cs[M(OTeF5)6], [Et4N][M(OTeF5)6], and [(n-Bu)4N][M(OTeF5)6] complexes, (M = Nb, Ta). The electrochemical reduction of the niobium complex occurs in CH2Cl2 at ?0,69 V and in acetonitrile at ?0,60 V (vs. SCE). The tantalum complex is reduced in CH2Cl2 at ?1,52 V and in acetonitrile at ?1,42 V (vs. SCE).  相似文献   

15.
SnCl2 as a Bridging Ligand in [{(CO)5M}2Sn(Cl)2]2? (M = Cr, Mo, W) — Synthesis, Structure, and Reactivity [{(CO)5Cr}2Sn(Cl)2]2?, 1 , may be obtained from [(CO)5Cr]2? or [(CO)5CrSnCl2 · THF] in fair yields. Alternatively, 1 is accessible by the reaction of [Cr2(CO)10]2? with SnCl2. This procedure may be extended to the synthesis of [{(CO)5M}2Sn(Cl)2]2? (M = Mo, 2 ; M = W, 3 ). The compounds 1–3 are crystallized as their alkalimetal (12-crown-4)2 or [2,2,2]cryptand salts. X-ray analyses demonstrate bridging SnCl2-moieties with M? Sn? M-angles close to 130° in each case. The relation of the bonding situation in 1–3 to the ones observed for stannylene or ?inidene”? complexes, respectively, is discussed. The transformation of 1 into the rhombododecahedral (X-ray analysis) Sn? O-cage compound [{(CO)5CrSn}63-O)43-OH)4], 4 , demonstrates the reactivity of the dianions 1–3 .  相似文献   

16.
Polynuclear Complexes with Fe? As, Fe? Sb, and Fe? Bi Frameworks The anionic iron clusters Fe3(CO)112? and Fe4(CO)132? were reacted with compounds EX3 and with organic derivatives REX2 and R2EX of the elements arsenic, antimony, and bismuth. Commonly redox and cluster degradation reactions were observed. The new complexes [(CO)4Fe? AsMe2? Fe(CO)4]?, [HFe3(CO)9(mu;3-SbBut)]?, [Fe3(CO)10 (mu;3-Sb)]?, and [Fe3(CO)10(mu;3-Bi)]? were formed and isolated as their PPN salts. The Fe? As? Fe complex was identified by a structure determination, the other complexes were identified by their spectra.  相似文献   

17.
Reaction of the iron ketenylidene (PPN)2[Fe3(CO)9CCO] [PPN =bis (triphenylphosphine)nitrogen(+1)] with trifluoroacetic anhydride forms a highly electrophilic acetylide cluster (PPN)[Fe3(CO)9CCOC(O)CF3] (lc), analogous to the known compounds (PPN)[Fe3(CO)9CCOR] [R=Et, (Ia); Ac, (Ib)] prepared from the reaction of ethyl triflate and acetyl chloride on the ketenylidene. Reaction of phosphines and (Ib, c) yield phosphonium acetylides [Fe3(CO)9CCPR3] [(II),R=Ph], with loss of (PPN)[CH3CO2] or (PPN)[CF3CO2]. Additionally, (Ic) and triphenylarsine react to give an analogous arsonium acetylide [Fe3(CO)9CCAsPh3] (III). No reaction occurs when an excess of arsine is added to (Ib). The reaction of (Ib, c) with anionic nucleophiles is reported, including reaction of Na[CpFe(CO)2] and (Ib) to afford an unusual metallated acetylide cluster (PPN) [Fe3(CO)9CCFe(CO)2Cp] (IV). Clusters (II), (III), and (IV) are spectroscopically characterized and a single crystal x-ray structure determination of (IV) is reported. (PPN)[Fe3(CO)9CCFe(CO)2Cp] (IV) crystallizes in the monoclinic space group P21/n;a=17.793(2) Å;b=16.108(3) Å;c=18.157(3) Å;=107.62(1)0;V=4959(3) Å3;Z=4. Refinement of 469 variables on 5981 observed [I>3(I)] reflections converged toR=3.5% andRw=4.7%.  相似文献   

18.
Reactions of Cyclostibanes, (RSb)n [R = (Me3Si)2CH, n = 3; Me3CCH2, n = 4, 5] with the Transition Metal Carbonyl Complexes [W(CO)5(thf)], [CpxMn(CO)2(thf)], [CpxCr(CO)3]2, and [Co2(CO)8]; Cpx = MeC5H4 (RSb)3 [R = (Me3Si)2CH] reacts with [W(CO)5(thf)], [CpxMn(CO)2(thf)], or [Co2(CO)8] to give [(RSb)3W(CO)5] ( 1 ), [RSb{Mn(CO)2Cpx}2] ( 2 ) or [RSbCo(CO)3]2 ( 3 ). The reaction of (R′Sb)n (n = 4, 5; R′ = Me3CCH2) with [CpxCr(CO)3]2 leads to [(R′Sb)4{Cr(CO)2Cpx}2] ( 4 ); Cpx = MeC5H4, thf = Tetrahydrofuran.  相似文献   

19.
The utility of photochemical methods for the directed synthesis of mixed-metal metal clusters has been explored. The 366 nm photolysis of a solution containing [PPN] [Co(CO)4] (PPN = (Ph3P)2N+) and Os3(CO)12 gives the new cluster [PPN][CoOs3(CO)13] in 33% yield. Irradiation of a mixture of Fe(CO)5 and H2Os3(CO)10 yields H2FeOs3(CO)13 in 95% yield, and photolysis of Ru3(CO)12 in the presence of H2Os3(CO)10 gives the new cluster H2RuOs3(CO)13. Details of these syntheses, their probable mechanisms, and the characterization of the new compounds are discussed.  相似文献   

20.
The co‐adsorption of O2 and CO on anionic sites of gold species is considered as a crucial step in the catalytic CO oxidation on gold catalysts. In this regard, the [Au2O2(CO)n]? (n=2–6) complexes were prepared by using a laser vaporization supersonic ion source and were studied by using infrared photodissociation spectroscopy in the gas phase. All the [Au2O2(CO)n]? (n=2–6) complexes were characterized to have a core structure involving one CO and one O2 molecule co‐adsorbed on Au2? with the other CO molecules physically tagged around. The CO stretching frequency of the [Au2O2(CO)]? core ion is observed around =2032–2042 cm?1, which is about 200 cm?1 higher than that in [Au2(CO)2]?. This frequency difference and the analyses based on density functional calculations provide direct evidence for the synergy effect of the chemically adsorbed O2 and CO. The low lying structures with carbonate group were not observed experimentally because of high formation barriers. The structures and the stability (i.e., the inertness in a sense) of the co‐adsorbed O2 and CO on Au2? may have relevance to the elementary reaction steps on real gold catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号