首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Mechanically induced free radical (mechanoradical) formation of several substituted celluloses such as carboxylmethyl cellulose, chitin, and chitosan was studied based on electron-spin resonance (ESR) in comparison with those of plasma-induced radicals. Room temperature ESR spectra had multicomponent spectra and were different in pattern from each other. The mechanoradical concentration gradually decreased after reaching the maximum value in each substituted polysaccharide, accompanied by a decrease in molecular weight in the course of vibratory milling. One of the most intriguing facts is that the component radicals are all glucose-based radicals as in the case of plasma irradiation, although it is known that mechanoradicals are formed by 1,4-glucosidic bond cleavage of polysaccharides.  相似文献   

2.
We carried out the mechanolysis of polymethylmethacrylate (PMMA) at various mechanical energies and analyzed kinetically the mechanoradical concentration and molecular weight at various mechanical energies. The radical concentration gradually increased to a maximum and then gradually decreased after reaching the maximum value. It is suggested that the radical quenching reaction (disproportionation and/or recombination) progressed together with radical formation. Kinetic analysis of the mechanoradical concentration indicated that the actual amounts of mechanoradicals produced were larger than observed. It is also suggested that vast numbers of reactions take place in mechanolysis. The molecular weight decreased exponentially toward the limiting value, and the limiting molecular weight was larger with decreases in mechanical energy. It is also suggested that mechanoradical formation is inversely proportional to the change in molecular weight at any given mechanical energy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4161–4167, 2004  相似文献   

3.
Plasma-induced radicals of several crosslinked methacrylic polymers such as poly(ethyleneglycol dimethacrylate) (PEDMA), poly(2-hydroxyethylmethacrylate) (PHEMA) and polymethacrylamide (PMAAm) were studied by electron spin resonance (ESR). The observed ESR spectra did not exhibit a drastic difference in the spectral feature caused by the effect of crosslinking. All the spectral features can be represented by “nine-line spectra” as a major spectral component similar to those of linear methacrylic polymers such as polymethacrylic acid (PMAA). A pronounced effect of crosslinking, however, has emerged on the specific formation in the radical structure and the stability of radicals formed, especially in PEDMA. The formation of fewer kinds of radical in PEDMA is apparently caused by the high degree of crosslinking which leads to a suppression of the occurrence of depolymerization on plasma irradiation.  相似文献   

4.
The formation and behavior of photo-and mechanoinduced free radicals in cellulose were studied by ESR spectroscopy and the capability of these free radicals to initiate graft copolymerization reactions was demonstrated. Although an 11-line ESR signal was detected from cellulose irradiated with ultraviolet (UV) light, a higher-intensity ESR signal with a five-line pattern was detected from a sample mechanically milled at 77 K. The decay of photoinduced free radicals when heated took place monotonously, whereas mechanoradicals exhibited an anomalous behavior with an increased signal intensity at 150 K before decaying at a higher temperature. Mechanoradicals have been found to react more efficiently and rapidly with oxygen and methyl methacrylate (MMA) than photoinduced free radicals. The peroxy mechanoradicals, however, were mobile and decayed more rapidly than the peroxy photoinduced radicals. Simultaneous graft copolymerizations of MMA to cellulose demonstrated that mechano-and photoinduced free radicals are capable of initiating grafting reactions, but a higher degree of grafting efficiency was obtained from cellulose treated mechanically.  相似文献   

5.
Analysis of ESR spectra of mechanoradicals from poly(methyl methacrylate) reveals that after mechanical degradation in vacuo at 77°K, the sample contains two types of primary radicals? CH2? C(CH3)(COOCH3) (I) and CH2? C(CH3)(COOCH3)? CH2 (II) produced by the breaking of the polymer chain, and secondary radicals ? CH2? C(CH3)(COOCH3)? CH? C(CH3)? (COOCH3)? CH2? (III). With increasing temperature, radical I remains stable while II reacts with methylene hydrogen of the polymer chain giving rise to the secondary radical III, which decays and finally disappears as the temperature rises. After admission of oxygen at 113°K, the polymer radicals react with oxygen with formation of polymer peroxy radicals ROO. and diamagnetic dimers. With increasing temperature the latter dissociate again to the original polymer peroxy radicals which gradually decay, if the temperature is increased further. The present results are compared with earlier ones obtained on poly(ethylene glycol methacrylate) (PGMA).  相似文献   

6.
In this study, initially, we tried to obtain the mechanoradicals of PMMA (poly(methyl methacrylate)). For this purpose, we designed a simple drilling apparatus. Using this apparatus, we prepared some PMMA samples at 77 K in vacuum. Later, by using an ESR (electron spin resonance spectrometer), we observed ESR signals for these samples at 77 K. This means that mechanoradicals have been successfully produced by mechanical fracture in PMMA using our drilling apparatus. Secondly, we tried to identify the radicals from these spectra through using theoretical analyses and, some computer simulations have been done by suggesting two different theoretical models for these ESR signals. Finally, by using experimental and theoretical data, we showed that our simple apparatus could be used to obtain mechanoradicals from polymers. Results were seen to be in very good agreement with the literature. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2195–2200, 1997  相似文献   

7.
Mechanical fracture of solid polymer under vacuum at 77K can, in principle, produce both mechanoradicals and mechanoanions which are formed by homolytic and heterolytic scission of carbon-carbon bonds in the polymer main chain. The production of mechanoanions was claimed by a detection of tetracyanoethylene (TCNE) anion radical (TCNE), which was observed by electron spin resonance (ESR) spectroscopy using the electron trapping method with TCNE.A novel mechanism for generating triboelectricity is proposed. The charge carrer is an electron. The electron donor is the mechanoanion A, which is produced by heterolytic carbon-carbon bond scission of the main chain of polymer A. The electron acceptor is the mechanoradical B·, which is produced by homolytic carbon-carbon bond scission of the main chain of polymer B. Charge separation is due to an electron transfer from the mechanoanion to the mechanoradical when in contact. It is possible to speculate the sign of the charge induced by friction from the electron release potential of A, Pr(A), and the molecular electron affinity of B·, Ea(B·). The triboelectric series deduced from our mechanism is PMMA-PP-PE-PVDF-PTFE, in which polymers having a relatively low Pr(A) to high Pr(A) or polymers having a relatively low Ea(B·) to high Ea(B·) are arranged. This order is identical with well-known triboelectric series.Dedicated to Professor Hans-Henning Kausch on the occasion of his 60th birthday  相似文献   

8.
Polymethylmethacrylate (PMMA) films were modified by RF oxygen plasma with various powers applied for different periods, and the effects of these parameters on the surface properties such as hydrophilicity, surface free energy (SFE), chemistry, and topography were investigated by water contact angle, goniometer, X‐ray photoelectron spectroscopy (XPS), and atomic force microscopy, and the types of the created free radicals and their decay were detected by electron spin resonance spectroscopy (ESR). SFE and contact angle results varied depending on the plasma parameters. Oxygen plasma treatment (100 W–30 min) enhanced the hydrophilicity of PMMA surface as shown by decreasing the water contact angle from 70° to 26°. XPS analysis showed the change in the amounts of the present functionalities as well as formation of new groups as free carbonyl and carbonate groups. The roughness of the surface increased considerably from ~2 nm to ~75 nm after 100 W–30 min oxygen plasma treatment. ESR analysis indicated the introduction of peroxy radicals by oxygen plasma treatment, and the intensity of the radicals increased with increasing the applied power. Significant decrease in radical concentration was observed especially for the samples treated with higher powers when the samples were kept under the atmospheric conditions. As a conclusion, RF plasma, causes changes in the chemical and physical properties of the materials depending on the applied parameters, and can be used for the creation of specific groups or radicals to link or immobilize active molecules onto the surface of a material. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
ESR spectra characteristic of peroxy radicals appeared rapidly in all of eleven hydrogen-containing polymers examined when treated with dilute fluorine. These radicals presumably result from the reaction of hydrocarbon and fluorocarbon radicals, existing at undetectably low steady-state concentrations, with the oxygen impurity content of commercial fluorine. In poly(vinylidene fluoride) films of thickness 11 and 58 μm the radical contents were nearly proportional to surface area rather than volume, in agreement with earlier reports of a shallow depth of penetration. Some polymers exhibited also or exclusively a broad spectral component, varying in character with the polymer; examples are polystyrene, polyethylene, poly (vinyl chloride), poly(vinylidene chloride), polyoctafluoropentadiene, polyhexafluoropropene, and a fluorinated graphite. The broad spectral component did not react with ordinary radical scavengers such as propylene and oxygen, and is probably not due to a fluorocarbon radical but to unknown transition metal fluorides.  相似文献   

10.
H2 generation during mechanochemical treatment of kaolinite by dry grinding was examined by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and BET surface area measurement. The H2 concentration in the mill pot, measured by gas chromatography, increased with grinding time up to a maximum concentration of 156 ppm (0.35 micromol) after 600 min. This H2 generation is considered to occur as a result of three processes: (1) structural destruction characterized by the delamination and loss of hydroxyl groups as a result of dry grinding, (2) transformation of liberated hydroxyls into water molecules by mechanochemical effects such as prototropy, and (3) H2 generation through reaction between surface water molecules and mechanoradicals created by the rupture of Si-O or Al-O-Si bonds. Although the surface area plateaued after 240 min grinding, the H2 concentration continued to increase, indicating that surface mechanoradicals are created during this later grinding stage. Thus, H2 generation can be used as an indicator of mechanoradical formation during mechanochemical treatment.  相似文献   

11.
Polypropylene (PP) and polyethylene (PE) peroxy radicals undergo photoreactions, but under commonly encountered photodegradation conditions these reaction rates are much lower than those of conventional radical reactions; for example, for PP peroxy radicals in noon summer sunlight at 25°C their rate of photolysis to alkyl radicals is less than one-tenth of their rate of hydrogen abstraction from the polymer. At lower temperatures( < ?10°C) or when more intense radiation is used, however, peroxy radical photolysis becomes a proportionately more important source of alkyl radicals. In addition, occurrence of photoinduced radical combination is confirmed but is shown to be important only when photolysis generates an alkyl radical sufficiently close to a peroxy radical that termination can occur before oxygen reconverts the alkyl radical to a peroxy radical. This termination mechanism therefore becomes more important for radicals generated at lower temperatures when the average separation of a radical pair is lower.  相似文献   

12.
The plasma treatment of polytetrafluoroethylene (PTFE) films was carried out in a capacitively coupled reactor with external electrodes. The free radicals generated in the process of treatment were detected by ESR techniques. The ESR spectra tended to indicate that the free radicals of the pLasma-treated PTFE film sample were turned into peroxy radicals on exposure to air. The extrema separation (W) of the ESR spectrum of the peroxy radical increased with the lowering temperature and underwent a sudden change within the temperature range of 170 to 190K. The ESR spectrum observed at 77K was quite different from that observed at room temperature. Finally, the effects of treatment time, input power and system pressure on radical concentration of the treated samples were studied. The attenuation of the peroxy radical at room temperature was also investigated.  相似文献   

13.
When poly-3,3-bis(chloromethyl)oxetane has been irradiated at ?196°C in a nitrogen atmosphere with ultraviolet light, a triplet spectrum is observed. After warming the sample, both a doublet and a singlet ESR spectra are observed. These spectra are attributed to and ? CH2? O, respectively. The formation mechanism of these free radicals is discussed. It is concluded that the main process of radical formation is the dissociation of chemical bonds from the excited state of the polymer produced through the energy absorption by irregular groups acting as sensitizers. In the presence of oxygen, the radical yield at ?196°C is greater than that in nitrogen atmosphere. This is attributed to the extra absorption of light by the charge transfer complexes of polymers with oxygen molecules. It is also proposed that participation of a charge transfer complex in photooxidation of ether is important in the primary radical formation step. When a polymer sample irradiated in vacuum with ultraviolet light is treated at ?78°C for a few minutes in the presence of air, peroxy radicals form. This shows that oxygen molecules diffuse very easily into this polymer, even at this low temperature.  相似文献   

14.
Diblock star polymers were synthesized via atom transfer radical polymerization from a palladium porphyrin macroinitiator. The arms of the star polymers had an amphiphilic design, with the central Pd-porphyrin surrounded by a relatively hydrophobic block of poly(butyl acrylate) and terminated by a hydrophilic block of poly(oligoethyleneglycol monomethylether monomethacrylate). The size of both the interior and exterior blocks of the polymer arms were tuned over a wide range of molecular weights with the exterior block used to solubilize the stars in polar media. The star polymers showed enhanced reactivity in the oxidation of 2-furaldehyde relative to a small molecule porphyrin, suggesting that the polymer backbone aids with catalytic turnover. Oxygen diffusion studies indicate that the polymer backbone shields the porphyrin excited state from oxygen quenching. Shielding is independent of molecular weight and polymer composition, but it is not pronounced enough to retard the rate of singlet oxygen generation under preparative photooxidation conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4939–4951, 2006  相似文献   

15.
The influence of relative humidity (RH) during the film preparation on the surface morphology and on the material distribution of the resulting technical polymer blend films consisting of poly (methyl methacrylate) (PMMA) and poly (vinyl butyral) (PVB) is investigated by atomic force microscopy. Both pure polymers and polymer blends with different compositions of PVB/PMMA dissolved in tetrahydrofuran (THF) were used. Polymer films prepared under dry conditions (RH < 20%) are compared with those that have the same polymer composition but were prepared under increased humidity conditions (RH > 80%). The films consisting of the pure polymers showed a nonporous surface morphology for low‐humidity preparation conditions, whereas high‐humidity preparation conditions lead to porous PVB and PMMA films, respectively. These pores are explained as the result of a breath figure formation. In the case of the polymer blend films containing both polymers, porous or phase‐separated surface structures were observed even at low‐humidity conditions. A superposition of the effects of phase separation and breath figure formation is observed in the case of polymer blend films prepared under high‐humidity conditions. Atomic force microscopy (AFM) images taken before and after the treatment with ethanol as a selective solvent for PVB indicate that PMMA is deposited on top of a PVB layer in the case of the low‐humidity preparation process whereas for high‐humidity conditions the silicon substrate is covered with a PMMA film. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
ESR studies are reported for the peroxides derived from butyric, caproic, caprylic, lauric, and stearic acids. In every case, a six-component soectrum is observed, which is transformed to the spectrum of the peroxy radical in the presence of oxygen, so the spectrum is assigned to alkyl radicals formed by rupture of the peroxide bond and decarboxylation of the alkoxy radical. The rate constants and activation energies are deduced for the decay of the radicals. The activity is inversely related to chain length. Buildup curves under UV are examined, since these are dependent on chain length and light intensity.  相似文献   

17.
Within the group of stimuli-responsive, “smart” materials, upper critical solution temperature (UCST) polymers remain sparsely investigated. Thus, this work focusses on a vastly ignored UCST polymer: polymethacrylamide (PMAAm). A cost-efficient photoiniferter reversible addition–fragmentation chain transfer (RAFT) polymerization yielding narrowly dispersed (Đ < 1.1) PMAAm is presented. This PMAAm exhibits highly thermoreversible UCST-type phase transitions (PT) in water/ethanol mixtures (ethanol content: 17–35 wt%) which are investigated via temperature dependent dynamic light scattering (DLS). Apart from the ethanol content, the PT temperature is affected by polymer mass fraction and chain length and varies between 10–80 °C depending on the three mentioned parameters. Lastly, PMAAm's propensity towards amide hydrolysis and concomitant PT-suppression is investigated. Below temperatures of 40 °C, PMAAm solutions show no sign of amide hydrolysis for at least three days, however, if heated to 70 °C, the thermoresponsiveness gradually degrades within hours.  相似文献   

18.
A model is presented that accounts for the formation of various etchants, unsaturated species, and polymers in halocarbon/oxidant plasma etching mixtures. It is discussed in terms of emission and mass spectral measurements of stable and unstable products in CF3Cl, CF3Br, C2F6, and related systems. In this reaction scheme, fluorocarbon precursors derived from the building block radical CF2 are saturated during reactions with atoms and reactive molecules. The most reactive species are preferentially removed by the saturation reactions. An ordering of this reactivity can be used to predict the dominant atomic etchants as a function of halocarbon and additive gas compositions.  相似文献   

19.
Electron-spin resonance (ESR) and altraviolet (UV) visible spectroscopic evidence has been found for the formation of diene, triene and tetraene, following the irradiation of polyethylene in the presence of acetylene. The polyenes are formed by a mechanism which is different from that observed under vacuum or with inert gas saturation. The sum of the G (polyene) values obtained by UV spectroscopy is almost half that of initial radical formation. It is concluded that polyene bridges, predominantly diene, form crosslinks between radical pairs. G (X) values determined from gel fraction data, using Saito-Kang-Dole theory, are found to be greatly in error and misrepresentative of crosslink changes. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
When an aqueous solution of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was heated at 70 degrees C for 30 min, formation of DMPO-OH was observed by ESR. This DMPO-OH radical formation was suppressed under an argon atmosphere. When water was replaced with ultra-pure water for ICP-MS experiments, DMPO-OH radical formation was also diminished. Under an argon atmosphere in ultra-pure water, the intensity of the DMPO-OH signal decreased to about 1/20 of that observed under aerobic conditions with regular purified water. The addition of hydroxyl radical scavengers such as mannitol did not affect the formation of DMPO-OH, but the signal turned faint in the presence of EDTA. We suggest that DMPO reacted with dissolved oxygen to form DMPO-OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号