首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Cilpa  M. Guitou  G. Chambaud   《Surface science》2008,602(17):2894-2900
A model system consisting of a cluster of 13 Ag atoms and n (n = 1, 2, 3) H2 molecules has been used to study, by ab initio methods, the structural and energetic characteristics of the chemi- and physisorption processes of H2 on a (1 0 0) surface of silver. The dissociative chemisorption of a first H2 molecule is analyzed in terms of hydrides formation and it is shown that several electronic states are interacting in the vicinity of the activation barrier leading to complex electronic processes. The energy of the physisorption interaction of the first H2 molecule for different orientations and that of further H2 molecules coming directly on top of the first chemisorbed one are determined with highly correlated wavefunctions. As for the (H2)nCu13 system, already studied with similar approaches, it is found for the (H2)nAg13 system that the physisorption energy of the second layer is enhanced by a factor close to two compared to that of the first layer due to dipolar interactions with the polarized surface. The physisorption energy of the third and further layers tends to the van der Waals H2/H2 interaction energy.  相似文献   

2.
Surface structures and electronic properties of hypophosphite, H2PO2, molecularly adsorbed on Ni(1 1 1) and Cu(1 1 1) surfaces are investigated in this work by density functional theory at B3LYP/6-31++g(d, p) level. We employ a four-metal-atom cluster as the simplified model for the surface and have fully optimized the geometry and orientation of H2PO2 on the metal cluster. Six stable orientations have been discovered on both Ni (1 1 1) and Cu (1 1 1) surfaces. The most stable orientation of H2PO2 was found to have its two oxygen atoms interact the surface with two PO bonds pointing downward. Results of the Mulliken population analysis showed that the back donation from 3d orbitals of the transition metal substrate to the unfilled 3d orbital of the phosphorus atom in H2PO2 and 4s orbital's acceptance of electron donation from one lone pair of the oxygen atom in H2PO2 play very important roles in the H2PO2 adsorption on the transition metals. The averaged electron configuration of Ni in Ni4 cluster is 4s0.634p0.023d9.35 and that of Cu in Cu4 cluster is 4s1.004p0.033d9.97. Because of this subtle difference of electron configuration, the adsorption energy is larger on the Ni surface than on the Cu surface. The amount of charge transfers due to above two donations is larger from H2PO2 to the Ni surface than to the Cu surface, leading to a more positively charged P atom in NinH2PO2 than in CunH2PO2. These results indicate that the phosphorus atom in NinH2PO2 complex is easier to be attacked by a nucleophile such as OH and subsequent oxidation of H2PO2 can take place more favorably on Ni substrate than on Cu substrate.  相似文献   

3.
The adsorption of carbon monoxide on the LaB6(1 0 0) and LaB6(1 1 1) surfaces was studied experimentally with the techniques of reflection absorption infrared spectroscopy and X-ray photoelectron spectroscopy. The interaction of CO with the two surfaces was also studied with density functional theory. Both surfaces adsorb CO molecularly at low temperatures but in markedly different forms. On the LaB6(1 1 1) surface CO initially adsorbs at 90 K in a form that yields a CO stretching mode at 1502-1512 cm−1. With gentle annealing to 120 K, the CO switches to a bonding environment characterized by multiple CO stretch values from 1980 to 2080 cm−1, assigned to one, two, or three CO molecules terminally bonded to the B atoms of a triangular B3 unit at the (1 1 1) surface. In contrast, on the LaB6(1 0 0) surface only a single CO stretch is observed at 2094 cm−1, which is assigned to an atop CO molecule bonded to a La atom. The maximum intensity of the CO stretch vibration on the (1 0 0) surface is higher than on the (1 1 1) surface by a factor of 5. This difference is related to the different orientations of the CO molecules on the two surfaces and to reduced screening of the CO dynamic dipole moment on the (1 0 0) surface, where the bonding occurs further from the surface plane. On LaB6(1 0 0), XPS measurements indicate that CO dissociates on the surface at temperatures above 400 K.  相似文献   

4.
The high resolution absorption spectrum of the H218O isotopologue of water has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) with a sensitivity on the order of αmin ∼ 10−9 cm−1. The 11 520-12 810 cm−1 spectral region corresponding to the 3ν + δ decade of vibrational states, was explored with an ICLAS spectrometer based on a Ti:Sapphire laser. It allowed detecting transitions with an intensity down to 10−27 cm/molecule which is about 100 times lower than the weaker line intensities available in the literature, in particular in the HITRAN database.The rovibrational assignment was performed on the basis of the results of variational calculations and allowed for assigning 3659 lines to the H216O, H218O, H217O, HD16O and HD18O species, leaving only 1.7% unassigned transitions. A line list including 1712 transitions of H218O has been generated and assigned leading to the determination of 692 rovibrational energy levels belonging to a total of 16 vibrational states, 386 being newly observed. A deviation on the order of 25% has been evidenced for the average intensity values given by HITRAN and the results of variational calculations. Ninety two transitions of the HD18O isotopologue could also be assigned and the corresponding upper rovibrational levels are given.  相似文献   

5.
The room temperature absorption spectrum of formaldehyde, H2CO, from 6547 to 6804 cm−1 (1527-1470 nm) is reported with a spectral resolution of 0.001 cm−1. The spectrum was measured using cavity-enhanced absorption spectroscopy (CEAS) and absorption cross-sections were calculated after calibrating the system using known absorption lines of H2O and CO2. Several vibrational combination bands occur in this region and give rise to a congested spectrum with over 8000 lines observed. Pressure broadening coefficients in N2, O2, and H2CO are reported for an absorption line at 6780.871 cm−1, and in N2 for an absorption line at 6684.053 cm−1.  相似文献   

6.
The high resolution absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 850-13 380 cm−1 spectral region which is the higher energy region reported so far for this water isotopologue. Very high deuterium enrichment was necessary to minimize the HDO absorption lines overlapping the D2O spectrum. The achieved sensitivity (noise equivalent absorption αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths on the order of 5 × 10−28 cm/molecule. The spectrum analysis, based on recent variational calculations has provided a set of 422 new rovibrational energy levels belonging to 11 vibrational states, including rotational sublevels for four new vibrational states and one level of the (0 9 1) highly excited bending state. The very weak (1 0 4)-(0 0 0) band at 13 263.902 cm−1, which is the highest D216O band currently observed, could be assigned despite the fact that the HDO absorption in the region is stronger by three orders of magnitude. The list of 996 D216O transitions is provided as Supplementary Material.  相似文献   

7.
Very weak water vapor absorption lines have been investigated by intracavity laser absorption spectroscopy (ICLAS) in the 11 335-11 947 and 12 336-12 843 cm−1 spectral regions dominated by the ν1 + 3ν2 + ν3 and ν2 + 3ν3 bands, respectively. A detectivity on the order of αmin ∼ 10−9 cm−1 was achieved with an ICLAS spectrometer based on a Ti: Sapphire laser. It allowed detecting transitions with an intensity down to 5 × 10−28 cm/molecule which is about 10 times lower than the weakest line intensities previously detected in the considered region. A line list corresponding to 1281 transitions with intensity lower than 5 × 10−26 cm/molecule has been generated. A detailed comparison with the line lists provided by the HITRAN database and by recent investigations by Fourier transform spectroscopy associated with very long multi pass cell is presented. The rovibrational assignment performed on the basis of the ab initio calculations of Schwenke and Partridge, has allowed for determining 176 new energy levels belonging to a total of 16 vibrational states.  相似文献   

8.
A quantum modeling of the CO adsorption on illuminated anatase TiO2 (0 0 1) is presented. The calculated adsorption energy and geometries of illuminated case are compared with the ground state case. The calculations were achieved by using DFT formalism and the BH and HLYP. Upon photoexcitation, an electron-hole pair is generated. Comparing of natural population in the ground state and the exited state, shows that an electron is trapped in a Ti4+ ion and a hole is localized in an oxygen ion. The photoelectron helps generation of a CO2 molecule on the TiO2 surface. As shown by optimization of these systems, the CO molecule adsorbed vertically on the TiO2 (0 0 1) surface in the ground state case while the CO molecule made an angle of 134.3° to this surface at the excited state case. Based on the here used model the obtained adsorption energy was 0.36 eV which is in excellent agreement with the reported experimental value. In the present work the C-O stretch IR frequencies are calculated which are 1366.53 and 1423.16 cm−1. These results are in good agreement with the earlier reported works for the surface carbonaceous compounds, and oxygenated carbon species.  相似文献   

9.
The absorption spectrum of water vapor has been investigated by Intracavity Laser Absorption Spectroscopy (ICLAS) between 13 540 and 14 070 cm−1. This spectrum is dominated by relatively strong transitions of the 4δ polyad of vibrational states. The achieved sensitivity - on the order of αmin ∼ 10−9 cm−1 - has allowed one to newly measure 222 very weak transitions with intensities down to 5 × 10−28 cm/molecule at 296 K. Fifty new or corrected H216O energy levels belonging to a total of 13 vibrational states could be determined from the rovibrational analysis based on variational calculations by Schwenke and Partridge. The previous investigations in the region by Fourier Transform Spectroscopy were critically evaluated and used to construct the best to date set of energy levels accessed by transitions in the considered region. All the rovibrational transitions reaching these upper energy levels and having intensities larger than 4.0 × 10−28 cm/mol were calculated. In the resulting line list, the positions at the level of experimental accuracy were augmented with variational intensities leading to the most complete line list for water in normal isotopic abundance in the 13 500-14 100 cm−1 region.  相似文献   

10.
The absorption spectrum of natural water vapour around 1.5 μm has been recorded with a typical sensitivity of 5 × 10−10 cm−1 by using a CW-cavity ring down spectroscopy set up based on fibred DFB lasers. A series of 31 DFB lasers has allowed a full coverage of the 6130.8-6748.5 cm−1 (1.63-1.48 μm) region corresponding to the H transparency band of the atmosphere. The line parameters (wavenumber and intensity) of a total of 5190 lines, including 4247 lines of water vapor, were derived by a one by one fit of the lines to a Voigt profile. Different isotopologues of water (H216O, H218O, H217O, and HD16O) present in natural abundance in the sample contribute to the spectrum. For the main isotopologue, H216O, 2130 lines were measured with line intensities as weak as 10−29 cm/molecule while only 926 lines (including a proportion of 30% inaccurate calculated lines) with a minimum intensity of 3 × 10−27 cm/molecule are provided by the HITRAN and GEISA databases. Our comparison in the whole 5750-7965 cm−1 region, has also evidenced that an error in the process of conversion of the intensity units from cm−2/atm to cm−1/(molecule × cm−2) at 296 K, has led to H216O line intensities values listed in the HITRAN-2000 database, systematically 8 % below the original FTS values. The rovibrational assignment was performed on the basis of the ab initio calculations by Schwenke and Partridge with a subsequent refinement and validation using the Ritz combination principle together with all previously measured water transitions relevant to this study. This procedure allowed determining 172, 139, 71, and 115 new energy levels for the H216O, H218O, H217O, and HD16O isotopologues, respectively. The results are compared with the available databases and discussed in regard of previous investigations by Fourier transform spectroscopy. The spectrum analysis has showed that most of the transitions which cannot be assigned to water are very weak and are due to impurities such as carbon dioxide and ammonia, leaving only about 3% of the observed transitions unassigned. The interest of a detailed knowledge of water absorption for trace detectors developed in the 1.5 μm range is underlined: for instance HDO contributes significantly to the considered spectrum while no HDO line parameters are provided by the HITRAN database.  相似文献   

11.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

12.
The high resolution absorption spectrum of dideuterated water, D216O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13 600-14 020 cm−1 spectral region which is the highest energy region reported so far for this water isotopologue. Because the HD16O absorption is stronger by three orders of magnitude in the region under study, it was necessary to use high deuterium enrichment in order to minimize the HD16O absorption lines overlapping the D216O spectrum. With the high sensitivity achieved (noise equivalent absorption αmin ∼10−9 cm−1), transitions with line strengths on the order of 5 × 10−28 cm molecule−1 could be detected. The spectrum analysis, based on recent variational calculations has provided a set of 177 new rovibrational energy levels belonging to six vibrational states.The most complete set of 53 vibrational energy levels of D216O, including the three newly determined band origins, was constructed from an exhaustive review of the literature data. The fitting of the parameters of the vibrational effective Hamiltonian has allowed to reproduce the whole set of vibrational energies with an rms deviation of 0.055 cm−1. This simple model gave consistent vibrational labels of the D216O states up to 18 000 cm−1. Above 15 000 cm−1, Fermi and Darling-Dennison resonance interaction were found to induce strong vibrational mixings of the wave functions in the normal mode basis, leading to ambiguous vibrational labeling.  相似文献   

13.
The weak absorption spectrum of dideuterated water, D2O, has been recorded between 12 450 and 12 850 cm−1 by high sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS). This spectral region corresponds to the (ν1 + ν2/2 + ν3) = 5 polyad, dominated by the 4ν1 + ν3 band centered at 12 743.035 cm−1. The achieved sensitivity has allowed for the detection of lines with a minimum intensity of 2 × 10−28 cm/molecule i.e. typically two orders of magnitude lower than previous observations in the region considered. A total of 586 energy levels belonging to 11 vibrational states were determined. The rovibrational assignment process of 1025 lines ascribed to D2O was based on new results of variational calculations by Shirin et al. [S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Quant. Spectrosc. Radiat. Transfer, in press, doi:10.1016/j.jqsrt.2007.07.010]. The overall agreement between these calculations and the observed spectrum is good both for the line positions and line intensities. The difficulties encountered while performing the rovibrational labeling and the assignment of the weakest transitions not included in Combination Differences relations, are discussed.  相似文献   

14.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed.  相似文献   

15.
The high resolution absorption spectrum of monodeuterated water, HDO, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 145-13 160 cm−1 region. The achieved sensitivity (noise equivalent absorption on the order of αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths as weak as 10−27 cm/molecule which is about 50 times lower than the weakest line intensities previously detected in the considered region.The rovibrational assignment of the 1179 lines attributed to the HDO isotopologue was based on the results of the variational calculations of Schwenke and Partridge as well as the recent calculations based on a new HDO potential energy surface refined from the fitting to the available experimental data. The overall agreement between these new calculations and the observed spectrum is very good, the rms deviation of the differences between the calculated and observed energy values being 0.05 cm−1. A set of 304 new experimental HDO energy levels was obtained. In particular, band origins for the (1 2 2), (2 0 2), and (3 1 1) vibrational states, at 12 568.190, 12 644.652, and 12 919.938 cm−1, respectively, and their rotational sublevels are derived for the first time. A detailed HDO database of 1337 transitions was constructed and is provided as Supplementary Material.  相似文献   

16.
Phosphine and tertiarybutylphosphine adsorption on the indium-rich InP (0 0 1)-(2 × 4) surface at 25 °C have been studied by internal reflection infrared spectroscopy, X-ray photoelectron spectroscopy, and low energy electron diffraction. Both molecules form a dative bond to the empty dangling bonds on the In-P heterodimers and the second-layer In-In dimers and vibrate symmetrically at 2319 (2315) and 2285 (2281) cm−1 and asymmetrically at 2339 (2339) and 2327 (2323) cm−1. A fraction of these species dissociate into adsorbed PH2 with the hydrogen and tertiarybutyl ligands transferring to nearby phosphorus sites. The calculated energy barriers for desorption (<11 kcal/mol) of these molecules is less than that for dissociation (>17 kcal/mol) and explains their low sticking probabilities at elevated temperatures under InP growth conditions.  相似文献   

17.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

18.
The adsorption of benzotriazole (BTAH or C6N3H5) on a Cu(1 1 1) surface is investigated by using first principle density functional theory calculations (VASP). It is found that BTAH can be physisorbed (<0.1 eV) or weakly chemisorbed (∼0.43 eV) onto Cu(1 1 1), and the chemical bond is formed through nitrogen sp2 lone pairs. The weak chemisorption can be stabilized by reaction with neighboring protonphilic radicals, like OH. Furthermore, the geometries and associated energies of intermolecular hydrogen bonds between adsorbates on Cu(1 1 1) are also calculated. A model of the first layer of BTAH/BTA on Cu(1 1 1) surface is developed based on a hydrogen bond network structure.  相似文献   

19.
The absorption spectra of water vapor near 1.455 and 1.66 μm have been recorded with a typical absorption sensitivity of 5 × 10−10 cm−1 by using CW-cavity ring down spectroscopy. A series of 18 distributed feed-back (DFB) lasers was used as sources and allowed for the coverage of the 5911.0-5922.5, 5926-5941.8, 5957.0-6121.6, and 6745-7015.6 cm−1 spectral regions. These regions extend to lower and higher energies our previous study of the water spectrum in the important 1.5 μm transparency window [P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, Vl.G. Tyuterev, J. Mol. Spectrosc. 227 (2004) 90-108]. The line parameters were determined with the help of an interactive least squares multi-lines fitting program which uses a Voigt function as line profile. More than 1900 water lines with intensities ranging between 10−28 and 5 × 10−24 cm/molecule at 296 K were measured, about 690 of them being reported for the first time. The rovibrational assignment was performed on the basis of previously determined energy levels and of the results of the variational global calculations [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618-4639]. The assignment results were validated by using the Ritz combination principle together with previously reported water transitions. Several new energy levels were determined for the H216O, H217O, and HD16O isotopologues. The retrieved line lists of the H216O, H217O, H218O, and HD16O isotopologues are compared with the available calculated and experimental (FTS) databases for water.  相似文献   

20.
The weak absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) between 11 400 and 11 900 cm−1. This spectrum is dominated by the 3ν1 + ν2 + ν3 and the ν1 + ν2 + 3ν3 centered at 11 500.25 and 11 816.64 cm−1, respectively. A total of 530 energy levels belonging to eight vibrational states were determined. The rovibrational assignment process of the 840 lines attributed to D2O was mostly based on the results of new variational calculations consisting in a refinement of the potential energy surface of Shirin et al. [J. Chem. Phys., 120 (2004) 206] on the basis of recent experimental observations, and a dipole moment surface from Schwenke and Partridge [J. Chem. Phys. 113 (2000) 6592]. The overall agreement between these calculations and the observed spectrum is very good both for the line positions and the line intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号