首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Scanning tunneling microscopy was used to compare the morphologies of Ru nanoparticles deposited onto highly-oriented graphite surfaces using two different physical vapour deposition methods; (1) pre-formed mass-selected Ru nanoparticles with diameters between 2 nm and 15 nm were soft-landed onto HOPG surfaces using a gas-aggregation source and (2) nanoparticles were formed by e-beam evaporation of Ru films onto HOPG. The particles generated by the gas-aggregation source are round in shape with evidence of facets resolved on the larger particles. Annealing these nanoparticles when they are supported on unsputtered HOPG resulted in the sintering of smaller nanoparticles, while larger particles remained immobile. Nanoparticles deposited onto sputtered HOPG surfaces were found to be stable against sintering when annealed. The size and shape of nanoparticles deposited by e-beam evaporation depend to a large extent on the state of the graphite support and the temperature. Ru deposition onto unsputtered HOPG is characterised by bimodal growth with large flat particles formed on the substrate terraces and smaller diameter particles aligned along the substrate steps. Evaporation onto sputtered HOPG results in the formation of 2 nm round particles with a narrow size distribution. Finally, thermal deposition onto both sputtered and unsputtered HOPG at 660 °C results in larger particles showing a flat Ru(0 0 0 1) top facet.  相似文献   

2.
Gold nanoparticles with a diameter comprised between 4 and 6 nm are stabilized in nanosized pits of well defined depth in highly oriented pyrolytic graphite (HOPG). These pits are produced by creation of artificial defects, followed by etching under a controlled oxygen atmosphere. At low Au coverage, clusters are found on the edges of the hexagonal pits maximizing the contact to dangling bonds on graphite multisteps. Larger coverage results in Au beads of surprisingly well defined shape and with a constant bead density per unit length. Most remarkable is the stability of these nanostructures under ambient conditions. Temperatures as high as 650 K do not alter the morphology of the gold clusters. Higher temperatures do not lead to a change of the cluster morphology but to catalytically driven etching of the HOPG substrate.  相似文献   

3.
Oxidation of AgAu bimetallic nanoparticles on sputtered HOPG by atomic oxygen and reduction of the oxidized surface by CO at room temperature were studied using X-ray photoelectron spectroscopy (XPS). For 2 nm-sized nanoparticles, prepared by postdeposition of Ag on Au-core, atomic oxygen exposure mostly leads to the formation of chemically inert oxygen species. This result is analogous to that of pure Ag and Au nanoparticles of similar sizes on the same substrate. In contrast, “Au on Ag-core” nanoparticles form chemically active oxygen species, suggesting that depending on detailed structures of bimetallic nanoparticles, diverse chemical properties can be obtained.  相似文献   

4.
We investigated the early nucleation stages of evaporated gold submonolayers on different carbon surfaces (pristine HOPG, argon-ion irradiated HOPG and amorphous carbon). Gold core-level and valence band spectra were measured by monochromatised X-ray photoelectron spectroscopy (MXPS). The Au 4f spectra for the lowest coverages (0.1 Å equivalent thickness) on irradiated HOPG and amorphous carbon surprisingly exhibited two well-separated doublets. We attribute this phenomenon to a bimodal particle size distribution caused by gold atom pinning at carbon defect sites. Deposition at elevated temperatures (on irradiated HOPG) opens a possibility to grow particles preferentially on defect sites. The influence of carbon surface defects on the cluster morphology was checked by SEM imaging. These results are interesting for future applications as they help to improve control over metal nanodots growth.  相似文献   

5.
The paper reports on surface morphology, structure and microhardness of TiSi–N films formed by cosputtering from two target-facing unbalanced magnetrons, equipped with pure Ti and Si targets, on an unheated substrate rotating in front of both targets. The ratio Si/Ti in the TiSi–N film was achieved by modifying the magnitude of currents in the individual magnetrons and by the addition of nitrogen to the film. The rotation of the substrate has a strong effect on the film deposition rate and its morphology. The deposition rate is 3 times lower than that of the film deposited on a stationary substrate. The surface roughness of a polycrystalline Ti film deposited on the rotating substrate is considerably higher than that on a stationary substrate. On the contrary, the surface of an amorphous Si film is smooth and there is no difference between the roughness of Si films sputtered on stationary and on rotating substrates. The hardness of the film increases with increasing Si content and with the addition of nitrogen to the TiSi film. The Ti(26 at.%)Si(8.5 at.%)N(65 at.%)-film sputtered on an unheated rotating steel substrate, held at a floating potential, exhibited the best result with a hardness of 29 GPa.  相似文献   

6.
The ZnO:Fe nanoparticles of mean size 3-10 nm were synthesized at room temperature by simple co-precipitation method. The crystallite structure, morphology and size estimation were performed by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Fe doping concentration. The magnetic behavior of the nanoparticles of ZnO with varying Fe doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially these nanoparticles showed strong ferromagnetic behavior, however at higher doping percentage of Fe, the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Fe-Fe ions suppressed the ferromagnetism at higher doping concentrations of Fe. Room-temperature Mössbauer spectroscopy investigation showed Fe3+ nature of the iron atom in ZnO matrix.  相似文献   

7.
This paper is devoted to the study of two-component thin films deposited at elevated temperatures. The dependence of plasma-assisted film deposition from a flow of sputtered Cu and Fe atoms on the substrate temperature and type, concentration of sputtered components in the flow, and film thickness is investigated.  相似文献   

8.
Nanocrystalline ZnO, ZnO-Zn, and ZnO-Zn-Fe powders with a specific surface area up to 45 m2/g and a low Fe concentration (no more than 0.619 wt %) have been prepared using pulsed electron beam evaporation. The crystal structure, morphology, and size of the nanoparticles have been determined using X-ray powder diffraction, transmission electron microscopy, and scanning electron microscopy. It has been found that the magnetization of the ZnO-Zn and ZnO-Zn-Fe nanopowders increases after annealing in an oxidizing atmosphere. An elemental mapping with energy-dispersive X-ray analysis has revealed the absence of Fe clusters in the ZnO-Zn-Fe sample. A thermal analysis has demonstrated that dopants of Fe in ZnO increase the temperature of complete oxidation of Zn nanoparticles to 600°C, which creates favorable conditions for an increase in the density of structural defects upon oxidation of Zn to ZnO. The absence of clusters and secondary magnetic Fe phases in pure and doped ZnO-based nanopowders indicates the intrinsic nature of ferromagnetism at room temperature in nanopowders prepared by pulsed electron beam evaporation.  相似文献   

9.
The room temperature growth of gallium atoms on the highly oriented pyrolytic graphite (HOPG) surface has been performed. The gallium atoms were deposited by thermal evaporation method in an ultra high vacuum system at a base pressure 5 × 10−10 torr. The X-ray photo electron spectroscopy (XPS) studies had been performed to confirm the presence of gallium atoms on HOPG surface. Scanning tunneling spectroscopy (STM) technique was employed to study the surface morphology of the clean HOPG surface and gallium covered HOPG surfaces which recognize the formation of gallium induced nanostructures. The deconvoluted XPS core level spectra of C (1s) and Ga (3d) demonstrate the possible interaction between substrate and the adsorbate atoms. The STM analysis revealed that the gallium deposition on HOPG led to significant change in the surface morphology. It was observed that the Ga atoms adsorbed as layer structure on HOPG surface for low coverage while quasi one-dimensional chain like nanostructure (1 ± 0.2 nm) has been formed for higher Ga coverage. The nanostructured surfaces induced by Ga deposition are found to be stable and could be used as a template for the growth of metallic nanostructures.  相似文献   

10.
《Current Applied Physics》2020,20(6):755-759
We report multiferroelectric properties of Mn-doped BaTiO3 (MBTO) thin films on highly oriented pyrolytic graphite (HOPG) substrates. The MBTO thin films were grown on the HOPG substrate by pulse laser deposition. For comparison purpose, undoped BaTiO3 (BTO) thin films were also prepared under same experimental conditions. The BTO and MBTO thin films were polycrystalline, indicating that the MBTO thin film has better crystallinity than the BTO thin film. The leakage current of the MBTO thin film was reduced due to the Mn doping substitution. In addition, the MBTO thin film exhibited better than the BTO thin film in ferroelectric and magnetic behaviors. We suggest that the Mn doping bring about the improvements of ferroelectric and ferromagnetic properties of the BTO thin films. Based on atomic force microscopy (AFM) and conducting AFM (CAFM) studies, the grain size of MBTO thin film was much larger than that of BTO thin film.  相似文献   

11.
Bimetallic PdAu nanoparticles on SiO2 substrate were produced by a sequential room-temperature sputtering deposition method. By the atomic force microscopy technique we studied the nanoparticles self-organization mechanisms in various conditions. First, Pd nucleation and growth proceeds at the substrate defects and the Pd nanoparticles density increase rapidly. During the second sputtering deposition, Au atoms adsorb on the SiO2 and diffuse toward Pd nanoparticles without forming new nuclei. The Au atoms are trapped by the preformed Pd nanoparticles, forming PdAu bimetallic nanoparticles which size increases. Furthermore, fixing the amount of deposited Pd and increasing the amount of deposited Au, we analyzed the evolution of the PdAu film surface morphology: we observe that the PdAu grows initially as three-dimensional islands; then the PdAu film morphology evolves from compact three-dimensional islands to partially coalesced worm-like structures, followed by a percolation morphology and finally to a continuous and rough film. The application of the interrupted coalescence model allowed us to evaluate the critical mean island diameter R c ≈ 2.8 nm for the partial coalescence process. The application of the dynamic scaling theory of growing interfaces allowed us to evaluate the dynamic growth exponent β = 0.21 ± 0.01 from the evolution of the film surface roughness. Finally, fixing the amount of deposited Pd and Au we studied the self-organization mechanism of the PdAu nanoparticles induced by thermal processes performed in the 973–1173 K temperature range. The observed kinetic growth mechanism is consistent with a surface diffusion-limited ripening of the nanoparticles with a temperature-dependent growth exponent. The dependence of the growth exponent on the temperature is supposed to be linked to the variation with the temperature of the characteristics of the PdAu alloy. The activation energy for the surface diffusion process was evaluated in 0.54 ± 0.03 eV.  相似文献   

12.
Transmission electron microscopy and X-ray photoelectron spectroscopy analyses are performed to investigate Ge nanoparticles embedded in an amorphous SiO2 matrix. GeSiO thin films are prepared by two methods, sol?Cgel and radio frequency magnetron sputtering. After the deposition, the sol?Cgel films are annealed in either N2 (at 1 atm and 800 °C) or H2 (at 2 atm and 500 °C), and the sputtered films in H2 (at 2 atm and 500 °C), to allow Ge segregation. Amorphous Ge-rich nanoparticles (3?C7 nm size) are observed in sol?Cgel films. Crystalline Ge nanoparticles in the high pressure tetragonal phase (10?C50 nm size) are identified in the sputtered films. The size of the nanoparticles increases with Ge concentration in the volume of the film. At the film surface, the Ge concentration is much larger that in the volume for both sol?Cgel and sputtered films. At the same time, at the film surface, only oxidized Ge is observed.  相似文献   

13.
The morphology and surface composition of Al–Cr–Fe alloy powders of 0–63 and 63–100 μm size fractions, produced by gas and water atomisation, have been studied by scanning electron microscopy and Auger electron spectroscopy. While gas atomised particles are of spherical shape, water atomised powders are usually irregular in shape with a complex branched relief. The morphology and composition of surface oxides have been estimated. The surface oxide film is composed of aluminium oxides/hydroxides and contains no Fe and Cr atoms. Two to five water molecules are associated with one Al2O3 molecule on the surface of powders. The surface oxide film has a non-uniform thickness, with thick oxide islands separated by thinner oxide film. The parameters of the surface film morphology, such as the island coverage, the oxygen content and the thin film thickness, depend on the atomisation technology used and powder size fraction. Heavily and weakly oxidised powder groups present in all powder fractions are distinguished by Auger spectra analysis. Relationships between heavily and weakly oxidised powder groups are discussed as a function of atomisation technology and size fraction.  相似文献   

14.
《Current Applied Physics》2019,19(11):1187-1194
A seed-mediated growth method was commonly applied to prepare one-dimension nanomaterials. However, some associated particles were unavoidable in the formation of target nanoparticles. Herein, we reported a modified method to prepare silver nanotriangles with higher uniform shape and particle size. The size and morphology of the formed nanoparticles could be controlled by regulating reaction conditions. The results showed that cetyl trimethyl ammonium bromide (CTAB) concentration and seed concentration were related with both the morphology and the particle size. The NaOH concentration, AgNO3 concentration, and the mole ratio of Vc/Ag+ mainly affected the particle size of the formed nanotriangles. The formation of silver nanotriangles may be due to the selective stacking of the new tiny nanoparticles and the oriented growth of silver seed crystals. The oxidizing action of Br/O2 existing in the CTAB system should be responsible for the final morphology of truncated triangular silver nanoplates.  相似文献   

15.
The particle size distribution, morphology and optical properties of the Au nanoparticle (NP) structures for surface enhanced Raman signal (SERS) application are investigated in dependence on their preparation conditions. The structures are produced from relatively thin Au films (10–20 nm) sputtered on fused silica glass substrate and irradiated with several pulses (6 ns) of laser radiation at 266 nm and at fluencies in the range of 160–412 mJ/cm2. The SEM inspection reveals nearly homogeneously distributed, spherical gold particles. Their initial size distribution of the range of 20–60 nm broadens towards larger particle diameters with prolonged irradiation. This is accompanied by an increase in the uncovered surface of the glass substrate and no particle removal is observed. In the absorption profiles of the nanostructures, the broad peak centred at 546 nm is ascribed to resonant absorption of surface plasmons (SPR). The peak position, halfwidth and intensity depend on the shape, size and size distribution of the nanostructured particles in agreement with literature. From peak intensities of the Raman spectra recorded for Rhodamine 6G in the range of 300–1800 cm−1, the relative signal enhancement by factor between 20 and 603 for individual peaks is estimated. The results confirm that the obtained structures can be applied for SERS measurements and sensing.  相似文献   

16.
D’Andrea  C.  Neri  F.  Ossi  P. M.  Santo  N.  Trusso  S. 《Laser Physics》2011,21(4):818-822
Thin silver films were deposited by pulsed laser ablation in a controlled Ar atmosphere and their SERS activity was investigated. The samples were grown at Ar pressures between 10 and 70 Pa and at different laser pulse numbers. Other deposition parameters such as laser fluence, target to substrate distance and substrate temperature were kept fixed at 2.0 J/cm2, 35 mm and 297 K. Film morphologies were investigated by scanning and transmission electron microscopies (SEM, TEM). Surface features range from isolated nearly spherical nanoparticles to larger islands with smoothed edges. Cluster growth is favored by plume confinement induced by background gas. After landing on the substrate clusters start to aggregate giving rise to larger structures as long as the deposition goes on. Such a path of film growth allows controlling the surface morphology as a function of laser pulse number and Ar pressure. These two easy-to-manage process parameters control the number density and the average size of the as-deposited nanoparticles. We investigated the influence of substrate morphologies on their surface enhanced Raman scattering properties. Raman measurements were performed after soaking the samples in rhodamine 6G aqueous solutions over the concentration range between 1.0 × 10−4 and 5.0 × 10−8 M. The sensitivity of the film SERS activity on the surface features is put into evidence.  相似文献   

17.
A method using a focused ion beam (FIB) to prepare a silicon amorphous material is presented. The method involves the redeposition of sputtered material generated during the interaction of the Ga+ ion beam with a silicon substrate material. The shape and dimensions of this amorphous material are self-organized and reproducible. The stability of this amorphous material under electron irradiation was investigated in the transmission electron microscopy (TEM). Electron irradiation can induce recrystallization of the amorphous material, resulting in the lateral and vertical growth, starting at an amorphous-crystalline interface, of polysilicon containing defects.  相似文献   

18.
High-pressure DC magnetron sputtering was used for the deposition of cobalt on amorphous carbon (a-C) and SiO2. Deposition conditions, substrate surface morphology and annealing parameters are investigated in order to promote the synthesis of large arrays of nanoparticles, with regular size and shape. Uniformly distributed Co nanoparticles a few nanometers in size were formed under annealing at 700°C in H2. Particle nucleation and growth are discussed based on X-ray photoelectron spectroscopy, transmission and scanning electron microscopy and kinetic Monte Carlo modeling (KMC).  相似文献   

19.
Fe clusters have been synthesised in ultra-high-vacuum chamber using a gas-stabilized cluster aggregation method that ensures good control of the cluster size and naturally oxidized in order to obtain Fe/Fe oxide core-shell nanoparticles. The morphology of an individual nanoparticle, as revealed by transmission electron microscopy, consists of a Fe core of an average diameter of 4.4 nm surrounded by an oxide shell of uniform thickness of about 1.2 nm in average. The nanoparticles may be assimilated with a ferro-/antiferromagnetic (FM/AF) system. The morpho-structural features have been correlated with magnetic measurements on the core-shell nanoparticles. A significant exchange bias effect has been measured, when the sample was field-cooled under an applied field of 3 T. As the morphology of core-shell nanoclusters is much more complicated than in FM/AF bilayers of regular thickness due to the particular geometry of the coronal AF layer, the shape and surface anisotropy have to be taken into account for a correct interpretation of the magnetic data.  相似文献   

20.
利用Monte Carlo方法研究了基底显微结构对薄膜生长的影响. 对不同显微结构基底上薄膜生长的初始阶段岛的形貌和尺寸与薄膜覆盖度和入射粒子沉积速率之间的关系进行了模拟和分析. 模型中考虑了粒子沉积、吸附粒子扩散和蒸发等过程. 结果表明,基底显微结构对薄膜生长具有明显影响. 当沉积温度为300K、沉积速率为0.005ML/s(Monolayer/second,简称ML/s)、覆盖度为0.05ML时,四方基底上薄膜生长呈现凝聚生长. 随着覆盖度增加,岛的尺寸变大,岛的数目减少. 而对于六方基底,当覆盖度从0.05ML变化到0.25ML时,薄膜生长经历了一个从分散生长过渡到分形生长的过程. 无论是四方还是六方基底,随着沉积速率的增加,岛的形貌由少数聚集型岛核分布状态向众多各自独立的离散型岛核分布状态过渡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号