首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of ruthenium complexes [CpRu(AN)3][PF6] (1a) (AN=acetonitrile) with iron complexes CpFe(CO)2X (2a–2c) (X=Cl, Br, I) and CpFe(CO)L′X (6a–6g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Cl, Br, I) in refluxing CH2Cl2 for 3 h results in a triple ligand transfer reaction from iron to ruthenium to give stable ruthenium complexes CpRu(CO)2X (3a–3c) (X=Cl, Br, I) and CpRu(CO)L′X (7a–7g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Br, I), respectively. Similar reaction of [CpRu(L)(AN)2][PF6] (1b: L=CO, 1c: P(OMe)3) causes double ligand transfer to yield complexes 3a–3c and 7a–7h. Halide on iron, CO on iron or ruthenium, and two acetonitrile ligands on ruthenium are essential for the present ligand transfer reaction. The dinuclear ruthenium complex 11a [CpRu(CO)(μ-I)]2 was isolated from the reaction of 1a with 6a at 0°C. Complex 11a slowly decomposes in CH2Cl2 at room temperature to give 3a, and transforms into 7a by the reaction with PMe3.  相似文献   

2.
Reactions of CpMoIr3(μ-CO)3(CO)8 (1) with stoichiometric amounts of phosphines afford the substitution products CpMoIr3(μ-CO)3(CO)8−x (L)x (L = PPh3, x = 1 (2), 2 (3); L = PMe3, x = 1 (4), 2 (5), 3 (6)) in fair to good yields (23–54%); the yields of both 3 and 6 are increased on reacting 1 with excess phosphine. Products 2–5 are fluxional in solution, with the interconverting isomers resolvable at low temperatures. A structural study of one isomer of 2 reveals that the three edges of an MoIr2 face of the tetrahedral core are spanned by bridging carbonyls, and that the iridium-bound triphenyiphosphine ligates radially and the molybdenum-bound cyclopentadienyl coordinates axially with respect to this Molr2 face. Information from this crystal structure, 31P NMR data (both solution and solid-state), and results with analogous tungsten—triiridium and tetrairidium clusters have been employed to suggest coordination geometries for the isomeric derivatives.  相似文献   

3.
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature.  相似文献   

4.
The reactions of the half-sandwich molybdenum(III) complexes CpMo(η4-C4H4R2)(CH3)2, where Cp=η5-C5H5 and R=H or CH3, with equimolar amounts of B(C6F5)3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe3. The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3], indicate that the borane attack has occurred at the methyl position.  相似文献   

5.
In addition to well-known dinuclear phenylselenolato palladium complexes, the reaction of [PdCl2(PPh3)2] and NaSePh affords small amounts of novel trinuclear and hexanuclear complexes [Pd3Se(SePh)3(PPh3)3]Cl (1) and [Pd6Cl2Se4(SePh)2(PPh3)6] (2). Complex 1 is triclinic, P1?, a=13.6310(2), b=16.2596(2), c=16.9899(3) Å, α=83.1738(5), β=78.9882(5), γ=78.7635(5)°. Complex 2 is monoclinic, C2/c, a=25.7165(9), b=17.6426(8), c=27.9151(14) Å, β=110.513(2)°. There are no structural forerunners for 1, but the hexanuclear complex 2 is isostructural with [Pd6Cl2Te4(TeR)2(PPh3)6] (R=Ph, C4H3S) that have been observed as one of the products in the oxidative addition of R2Te2 to [Pd(PPh3)4]. Mononuclear palladium complexes may play a significant role as building blocks in the formation of the polynuclear complexes.  相似文献   

6.
A series of heterodimetallic complexes of general formula (C5R5)M(μ-CO)3RuC5Me5 (M = Cr, Mo, W; R = Me, Et) has been prepared in good yields by the reaction of [C5R5M(CO)3] with [C5Me5Ru(CH3CN)3]+. (C5Me4Et)W(μ-CO)3Ru(C5Me5) was characterized by a crystal structure determination. The W---Ru bond length of 2.41 Å is consistent with the formulation of a metal-metal triple bond, while the unsymmetrical bonding mode of the three bridging carbonyl groups reflects the inherent non-equivalence of the two different C5R5M-units. Using [CpRu(CH3CN)3]+ or [CpRu(CO)2(CH3CN)]+ as the cationic precursor leads to the formation of dimetallic species (C5R5)M(CO)5RuC5H5 with both bridging and terminal carbonyl groups.  相似文献   

7.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

8.
The reactions of [RuHCl(CO)(PPh3)3] and [(C6H6)RuCl2]2 with 2-benzoylpyridine have been examined, and two novel ruthenium(II) complexes – [RuCl(CO)(PPh3)2(C5H4NCOO)] and [RuCl2(C12H9NO)2] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   

9.
The crystal structure of MoO(O2)2(H2O)(hmpa), hmpa=hexamethylphosphoramide, has been reassessed and corrected as one of the axial parameters (namely the c-axis) was reported incorrectly. This resulted in significant differences in the internal geometry of the molecule, notably an decreased O–O atom distance (≈0.03 Å) in the metal-bonded peroxo ligands. Crystal packing forces and a flat bending potential of the Mo–O–P angle accounts for discrepancies between theory and experimental structures.  相似文献   

10.
In the present study we have analyzed the nature of palladium complexes in the catalytic system for selective carbon-sulfur bond formation via the addition of S-S and S-H bonds to alkynes. For the first time the mononuclear and dinuclear palladium complexes were clearly detected by DOSY NMR under the catalytic conditions. It was demonstrated that the concentration of these palladium complexes strongly depends on the amount of phosphine ligand available under reaction conditions.  相似文献   

11.
The cationic complexes [({Ph3P}2C)Ag(C{PPh3}2)]X (2+, X = Cl, BF4) with a linear arrangement of the ligands were obtained from the reaction of C(PPh3)2 (1) with the appropriate AgX in THF. The 31P NMR spectrum of the cation 2+ exhibits a doublet with J(Ag,P) = 15.3 Hz. The cation was also formed when the adduct O2C ← 1 was allowed to react with AgX in CH2Cl2 in the first step as shown by 31P NMR; however, deprotonation of the solvent finally produced the cation (HC{PPh3}2)+, (H1)+ quantitatively. In the absence of coordinating anions, the tricationic complex [({Ph3P}2CH)Ag(CH{PPh3}2)](BF4)3 (3), containing the cation (H1)+ as ligand, could be isolated by reacting AgBF4 with the salt (H1)(BF4). All compounds were characterized by IR and 31P NMR spectroscopy; the structures of the compounds [2]Cl·1.25THF, 3·5CH2Cl2, 3·4C2H4Cl2, and (H1)(BF4) could be established by X-ray analyses.  相似文献   

12.
The complex Mo(CO)3(NCMe)(PPh3)2, was synthesized by the reaction of Mo(NCMe)3(CO)3 with two equivalents of PPh3 and characterized by UV–Vis, IR, NMR and X-ray diffraction. This complex was used as a catalyst precursor for the hydrogenation of 1-hexene, styrene, cyclohexene and 2,3-dimethyl-1-butene and their mixtures under moderate conditions in homogeneous media. Under mild reaction conditions (T = 373 K, P = 60 atm), the substrates showed the following reactivity order: styrene > 1-hexene > cyclohexene > 2,3-dimethyl-1-butene. A quaternary equimolar mixture showed a different hydrogenation order: 1-hexene > cyclohexene > styrene > 2,3-dimethyl-1-butene; the presence of dibenzothiophene or mercury does not interfere with the activity of the catalyst.  相似文献   

13.
Detailed procedures for the syntheses of Os(CO)2(PPh3)3, Os(CO)(CNR)-(PPh3)3 (R = p-tolyl), Os(CO)(CS)(PPh3)3 and Os(CS)(CNR)(PPh3)3, together with the derived complexes Os(CO)2(CS)(PPh3)2, Os(CO)(CS)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CNR)(PPh3)2, Os(η2-C2H4)(CO)(CS)(PPh3)2, Os(η2CS2)(CO)2-(PPh3)2, Os(η2CS2)(CO)(CS)(PPh3)2, Os(η2-CS2)(CO)(CNR)(PPh3)2, Os(η2PhC2Ph)(CO)2(PPh3)2 and OsH(C2Ph)(CO)2(PPh3)2 are described.  相似文献   

14.
The reactions of [RuHCl(CO)(PPh3)3] with 8-hydroxy-2-methyl-quinoline-7-carboxylic acid and quinoline-2-carboxylic acid have been examined, and two novel ruthenium(II) complexes – [(PPh3)2RuH(CO)(C10H8NO3)] and [(PPh3)2RuCl(CO)(C9H6O2)] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   

15.
The new terminal phosphinidene complex [Cp2Zr=PDmp(PMe3)] (Dmp=2,6-Mes2C6H3; 1) was prepared in 81% yield by the reaction of [Li(Et2O)][P(H)Dmp] with [Cp2Zr(Me)Cl] in the presence of excess PMe3. Compound 1 reacts with Ph2PCl to produce selectively the sterically congested triphosphane DmpP(PPh2)2 (2) and [Cp2ZrCl2] in high yields. The structure of 2 obtained by X-ray diffraction analysis of a single crystal reveals phosphorus–phosphorus bond lengths of 2.251(2) and 2.234(2) Å and a PPP bond angle of 105.46(6)°.  相似文献   

16.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

17.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


18.
Cyclohexane solutions of [W(Cp)(CO)3]2 and [Mo(Cp)(CO)3]2 exhibit weak bimodal emission spectra when excited With 354 nm picosecond pulses, but do not luminesce when pumped at 530 nm. Picosecond lifetimes characterize the short-wavelength, emission bands, which may originate from metal-cyclopentadienyl CT excited states.  相似文献   

19.
The reaction of [Cp′Cr(CO)2(μ-SBu)]2 (1) (Cp′ = MeC5H4) with (PPh3)2Pt(PhCCPh) gives Cp′Cr(CO)2(μ-SBu)Pt(PPh3)2 (2) which could be regarded as a product of the substitution of acetylene ligand at platinum by a monomeric chromium–thiolate fragment. According to the X-ray diffraction analysis 2 contains single Cr–Pt (2.7538(15)) and Pt–S (2.294(2) Å) bonds while Cr–S bond (2.274(3) Å) is shortened in comparison with ordinary Cr–S bonds (2.4107(4)–2.4311(4) Å) in 1. The bonding between Cr–S fragment and platinum atom is similar to the olefine coordination in their platinum complexes.  相似文献   

20.
Fe[(CH3(CH2)2PO3)(H2O)] (1) and Fe[(CH3(CH2)17PO3)(H2O)] (2) were synthesized by reaction of FeCl2·6H2O and the relevant phosphonic acid in water in presence of urea and under inert atmosphere. The compounds were characterized by elemental and thermogravimetric analyses, UV-visible and IR spectroscopy. The crystal structure of (1) was determined from X-ray single crystal diffraction studies at room temperature: monoclinic symmetry, space group P21, , , , and β=98.62(3)°. The compound is lamellar and the structure is hybrid, made of alternating inorganic and organic layers along the c direction. The inorganic layers consist of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from the water molecule, separated by bi-layers of propyl groups. A preliminary structure characterization of compound (2) suggests a similar layered structure, but with an interlayer spacing of 40.3 Å. The magnetic properties of the compounds were both studied by a dc and ac SQUID magnetometer. Fe[(CH3(CH2)2PO3)(H2O)] (1) obeys the Curie-Weiss law at temperatures above 50 K (, ), indicating a Fe +II oxidation state, a high-spin d6 (S=2) electronic configuration and an antiferromagnetic exchange couplings between the near-neighbouring Fe(II) ions. Below , Fe[(CH3(CH2)2PO3)(H2O)] exhibits a weak ferromagnetism. The critical temperature of has been determined by ac magnetic susceptibility measurements. Compound (2) shows the same paramagnetic behaviour of the iron (II) propyl derivative. The values of C and θ were found to be and −44 K, respectively, thus suggesting the presence of Fe +II ion in the S=2 spin state and antiferromagnetic interactions between Fe(II) ions at low temperatures. Zero-field and field cooled magnetic susceptibility vs. T plots do not overlap below , suggesting the presence of an ordered magnetic state. The critical temperature, TN, has been located by the peaks at from the ac susceptibility (χ′and χ″) vs. T plots. Below TN hysteresis loops recorded in the temperature region show an S-shape, while below 15 K assume an ellipsoid form. They reveal that compound (2) is a weak ferromagnet. The critical temperature TN in these layered Fe(II) alkylphosphonates is independent of the distance between the inorganic layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号