首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependences of the electrical resistivity of CuFeTe2 semiconductor single crystals with a layered structure are investigated parallel and perpendicular to the plane of the crystal layers in the temperature range 5–300 K. It is demonstrated that, in both cases, the temperature dependences of the electrical resistivity in the temperature range studied are characterized by two portions associated with different mechanisms of electrical conduction. In the high-temperature range, the electrical conduction is predominantly provided by thermally excited impurity charge carriers in the allowed energy band. In the low-temperature range, the electrical conduction occurs through charge carrier hopping between localized states lying in a narrow energy band near the Fermi level. The activation energy for impurity charge carriers is determined. The density of localized states near the Fermi level, the spread in energies of these states, and the average carrier-hopping distances are estimated for different temperatures  相似文献   

2.
Thermoelectric power and electrical resistivity measurements on polycrystalline samples of Bi2Se3 and stoichiometric ternary compound in the quasi-binary system SnSe–Bi2Se3 in the temperature range of 90–420 K are presented and explained assuming the existence of an impurity band. The variation of the electron concentration with temperature above 300 K is explained in terms of the thermal activation of a shallow donor, by using a single conduction band model. The density of states effective mass m *=0.15m 0 of the electrons, the activation energy of the donors, their concentration, and the compensation ratio are estimated. The temperature dependence of the electron mobility in conduction band is analyzed by taking into account the scattering of the charge carriers by acoustic phonon, optical phonon, and polar optical phonon as well as by alloy and ionized impurity modes. On the other hand, by considering the two-band model with electrons in both the conduction and impurity bands, the change in the electrical resistivity with temperature between 420 and 90 K is explained.  相似文献   

3.
Samples of the composition TlNiS2 in the hexagonal system with the unit cell parameters a=12.28 Å, c=19.32 Å, and ρ=6.90 g/cm3 are synthesized. The results of the investigation into the electrical and thermoelectrical properties of TlNiS2 samples in the temperature range 80–300 K indicate that TlNiS2 is a p-type semiconductor. It is found that, at temperatures ranging from 110 to 240 K, TlNiS2 samples in a dc electric field possess variable-range-hopping conduction at the states localized in the vicinity of the Fermi level. The density of localized states near the Fermi level is determined to be NF=9×1020 eV?1 cm?3, and the scatter of the states is estimated as J≈2×10?2 eV. In the temperature range 80–110 K, TlNiS2 exhibits activationless hopping conduction. At low temperatures (80–240 K), the thermopower of TlNiS2 is adequately described by the relationship α(T)=A+BT, which is characteristic of the hopping mechanism of charge transfer. In the case when the temperature increases to the temperature of the onset of intrinsic conduction with the activation energy ΔE=1.0 eV, there arise majority intrinsic charge carriers of both signs. This leads to an increase in the electrical conductivity σ and, at the same time, to a drastic decrease in the thermopower α; in this case, the thermopower is virtually independent of the temperature.  相似文献   

4.
The structural, magnetic, and electrical properties of half-metallic Heusler alloys Fe2MnAl, Fe2MnSi, and Co2MnAl have been investigated in the temperature range of 4–900 K. According to the X-ray diffraction analysis, these alloys have the B2 and L21 structures with different degrees of atomic order. The magnetic state of the alloys is considered as a two-sublattice ferrimagnet. The electrical resistivity and thermoelectric power have been discussed in the framework of the two-current conduction model taking into account the existence of an energy gap in the electronic spectrum of the alloys near the Fermi level for the subband with spin-down (minority) electrons.  相似文献   

5.
运用第一性原理进行了相关计算研究Ga掺杂的ZnO和ZnS的电子结构的差异. 结果表明,LDA和LDA+U计算的结果在定性上是一致的. 掺杂Ga以后,ZnO和ZnS的费米能级处均出现杂质态. 掺杂中的ZnO,杂质态在导带是离域的. 掺杂后的ZnS,虽然p态比较离域,但其s态在费米能级处却是局域的. 前线轨道的电荷密度分布也给出了相同的信息. 交换ZnO和ZnS的晶格结构,结果不变. 局域化的Ga-s态是导致掺杂ZnS电学性能差的原因.  相似文献   

6.
The experimental data related to the electric field gradient at transition impurities either in hexagonal metals, or in cubic metals where the isotropy is perturbed by a next impurity, can be explained neither by the lattice contribution nor by the electronic contribution from the conduction band. A model is proposed here to investigate the electronic contribution arising from virtual bound 3d states on the impurity, by studying the local crystal field influence in a Friedel-Anderson model. It appears that at the 0°K limit, the localized electronic contribution to the EFG can be linearly related to the density nd(?F) of 3d states at the Fermi level. As a first approximation, this law is valid even at temperature different from 0°K so establishing a linear correlation between the EFG, the impurity resistivity and the amplitude of the charge perturbation around the impurity.  相似文献   

7.
The DC and AC conductivities of samples from the system (As2S3)100−x(AsSe0.5Te0.5I)x, where x=0, 5, 10, 15, 20, 25, 30, 35, 50, 70 and 90 mol%, were measured as a function of temperature. Besides, the AC conductivities of the samples with x=10 and 30 were measured as a function of frequency from room temperature to the glass transition temperature. The DC conductivity dependence on temperature is of the Arrhenius type, whereas the value of the pre-exponential factor suggests the electrical conduction by localized states in the band tails and by localized states near the Fermi level. The small values of the conduction activation energy (10−2-10−1 eV) obtained at higher frequencies suggest that the conduction in these materials is due to hopping of charge carriers between close defect states near the Fermi level.  相似文献   

8.
A study of the electrical resistance of thin polycrystalline EuS films (0.4–0.8 μm thick) in the temperature range 120–480 K has provided the basis for a model of the band structure of this substance. It has been shown that the main impurity levels in thin polycrystalline EuS films are those related with localized states near the conduction band bottom, as well as the E i donor levels of Eu ions outside regular lattice sites. The “tail” of the localized states extends in energy up to at least ?0.45 eV.  相似文献   

9.
Electrical resistivity, thermopower (TEP), thermal conductivity and the thermoelectric figure of merit are studied for the CeNi4Cr compound, which has been previously suggested to be a fluctuating valence system with a tendency to the increase of the effective mass at low temperatures. The analysis of the thermoelectric properties confirms such a possibility and provides characteristic parameters like the Debye temperature, Fermi energy and the position of the f band. Both the thermopower and the magnetic part of the electrical resistivity could be analyzed within a similar model assuming a narrow f-band of the Lorentzian form near the Fermi energy. The thermal conductivity shows that the phonon contribution exceeds the electronic one below 220 K.  相似文献   

10.
娄志东  徐征  徐春祥  于磊  滕枫  徐叙 《物理学报》1998,47(1):139-145
根据非晶态半导体的能带理论,讨论了分层优化薄膜电致发光方案中非晶二氧化硅加速层中的电子在高电场中的输运行为.研究结果表明:在高电场下,由于电场的存在降低了陷阱之间的平均势垒高度.在费密能级附近处的杂质及缺陷定域态和导带尾定域态中,电子的输运主要表现为电场增强的热辅助式跳跃传导;而在导带扩展态中,电子的输运仍像晶态半导体那样表现为共有化运动.此外,以实验数据为基础,计算出了非晶二氧化硅中电子的迁移率、最小金属电导率、导带迁移率边界状态密度及费密能级处的状态密度. 关键词:  相似文献   

11.
Layered single crystals of the TlGa0.5Fe0.5Se2 alloy in a dc electric field at temperatures ranging from 128 to 178 K are found to possess variable-range-hopping conduction along natural crystal layers through states localized in the vicinity of the Fermi level. The parameters characterizing the electrical conduction in the TlGa0.5Fe0.5Se2 crystals are estimated as follows: the density of states near the Fermi level NF = 2.8 × 1017 eV?1 cm?3, the spread in energy of these states ΔE = 0.13 eV, the average hopping length Rav = 233 Å, and the concentration of deep-lying traps N t = 3.6 × 1016 cm?3.  相似文献   

12.
On intercalated AgxMoSe2 samples, in addition to temperature measurements of the direct current electrical resistivity, measurements of the alternating current resistivity using the impedance spectroscopy technique are carried out in a wide frequency range and at different temperatures. The activation behavior of the d.c. conductivity, which increases with increasing silver content in the samples, is shown. The a.c. conductivity undergoes frequency dispersion, described by a “universal dynamic response” (UDR). It is shown that the relaxation processes during charge transfer in a variable field are accelerated with increasing silver content in the samples and with increasing temperature. The data obtained are analyzed using the models of the band and hopping conduction.  相似文献   

13.
We investigate the pressure and temperature behavior of current-dependent resistivity of β-SrV6O15. We observe a switching between states of different resistivities in the insulating state of β-SrV6O15. In the low pressure phase, the resistive switching appears at temperatures below the semiconductor-insulator transition. In the high pressure phase, under ~1.6 GPa, the switching appears in the temperature range of the phase transition. The existence of switching may imply an important role of strontium off-stoichiometry for the electrical transport in β-SrV6O15. No electric-field-induced enhancement of the conductivity is observed. However, the conduction is significantly nonlinear under ~1.6 GPa, indicating that the charge order pattern in the high pressure phase is considerably different from that of the low pressure phase.  相似文献   

14.
The present paper reports the comparative study of density of defect states (DOS) between bulk samples and thin films of glassy Se90Sb10. These glasses have been prepared by the quenching technique. Thin films of these glasses have been prepared by vacuum evaporation technique. Space-charge-limited conduction (SCLC) has been measured at different temperatures. The density of localized states near Fermi level is calculated by fitting the data to the theory of SCLC for the case of uniform distribution of localized states for bulk as well as for thin films. A comparison has been made between the density of states calculated in these two cases.  相似文献   

15.
In highly doped uncompensated layers of p-GaAs/AlGaAs quantum wells, activation conduction with low activation energies is observed at low temperatures and this conduction is not explained by known mechanisms (ε4 conduction). Such behavior is attributed to the delocalization of electron states near the maximum of a narrow impurity band in the sense of the Anderson transition. In this case, conduction is implemented due to the activation of minority carriers from the Fermi level to the indicated delocalized-state band.  相似文献   

16.
Electrical conduction at 77 K in CdxHg1−xTe, with the composition x ⩽ 0.2, is by electrons in the conduction band, by holes in the valence band and by holes in the impurity band. In samples with zero energy gap, x < 0.14, electrical conduction by holes in the valence band is comparable to electrical conduction by holes in the impurity band. In the open energy gap CdHgTe, electrical conduction by holes in the valence band is negligible in comparison to electrical conduction by holes in the impurity band. In CdHgTe samples, electrical conduction in the impurity band is described by the “Fermi Glass” model.  相似文献   

17.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

18.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

19.
The temperature dependences of the conductivities parallel and perpendicular to the layers in layered TlGaSe2 single crystals are investigated in the temperature range from 10 K to 293 K. It is shown that hopping conduction with a variable hopping length among localized states near the Fermi level takes place in TlGaSe2 single crystals in the low-temperature range, both along and across the layers. Hopping conduction along the layers begins to prevail over conduction in an allowed band only at very low temperatures (10–30 K), whereas hopping conduction across the layers is observed at fairly high temperatures (T?210 K) and spans a broader temperature range. The density of states near the Fermi level is determined, N F=1.3×1019eV·cm3)?1, along with the energy scatter of these states J=0.011 eV and the hopping lengths at various temperatures. The hopping length R along the layers of TlGaSe2 single crystals increases from 130 Å to 170 Å as the temperature is lowered from 30 K to 10 K. The temperature dependence of the degree of anisotropy of the conductivity of TlGaSe2 single crystals is investigated.  相似文献   

20.
The electrical properties of (Co45Fe45Zr10)x(Al2O3)1−x granular nanocomposites have been studied. The concentration dependences of electrical resistivity are S-shaped (in accordance with the percolation theory of conduction) with a threshold at a metallic component concentration of ∼41 at. %. An analysis of the temperature behavior carried out in the range 300–973 K revealed that structural relaxation and crystallization of the amorphous phase are accompanied by a decrease in the electrical resistivity of the composites above the percolation threshold and by its increase below the percolation threshold. For metallic phase concentrations x<41 at. %, variable range hopping conduction over localized states near the Fermi level was found to be dominant at low temperatures (77–180 K). A further increase in temperature brings about a crossover of the conduction mechanism from Mott’s law ln(σ) ∝ (1/T)1/4 to ln(σ) ∝ (1/T)1/2. A model of inelastic resonance tunneling over a chain of localized states of the dielectric matrix was used to find the average number of localized states involved in the charge transport between metallic grains. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 11, 2004, pp. 2076–2082. Original Russian Text Copyright ? 2004 by Kalinin, Remizov, Sitnikov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号