首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Quantitative NMR imaging of multiphase flow in porous media.   总被引:1,自引:0,他引:1  
  相似文献   

3.
Quantitative flow and diffusion measurements have been made for water in model porous media, using magnetic resonance micro-imaging methods. The samples consisted of compacted glass beads of various sizes down to 1 mm diameter. Typical flow and diffusion images exhibited a spatial resolution of 117 μm × 117 μm and velocities in the range 1–2 mm/s. Comparison of volume flow rates calculated from the flow velocity maps with values measured directly yielded good agreement in all cases. There was also good agreement between the mean diffusion coefficient of water calculated from the diffusion maps and the bulk diffusion coefficient for pure water at the same temperature. In addition, the mean diffusion coefficient did not depend on the pore sizes in the bead diameter range of 1–3 mm. Our results also show that partial volume effects can be compensated by appropriate thresholding of the images prior to the final Fourier transformation in the flow-encoding dimension.  相似文献   

4.
Two alternatives of primary variables are compared for two-phase flow in heterogeneous media by solving fully established benchmarks. The first combination utilizes pressure of the wetting fluid and saturation of the non-wetting fluid as primary variables, while the second employs capillary pressure of the wetting fluid and pressure of the non-wetting fluid. While the standard Galerkin finite element method (SGFEM) is known to fail in the physical reproduction of two-phase flow in heterogeneous media (unless employing a fully upwind correction), the second scheme with capillary pressure as a primary variable without applying an upwind technique produces correct physical fluid behaviour in heterogeneous media, as observed from experiments.  相似文献   

5.
A new finite volume-based numerical algorithm for predicting incompressible and compressible multi-phase flow phenomena is presented. The technique is equally applicable in the subsonic, transonic, and supersonic regimes. The method is formulated on a non-orthogonal coordinate system in collocated primitive variables. Pressure is selected as a dependent variable in preference to density because changes in pressure are significant at all speeds as opposed to variations in density, which become very small at low Mach numbers. The pressure equation is derived from overall mass conservation. The performance of the new method is assessed by solving the following two-dimensional two-phase flow problems: (i) incompressible turbulent bubbly flow in a pipe, (ii) incompressible turbulent air–particle flow in a pipe, (iii) compressible dilute gas–solid flow over a flat plate, and (iv) compressible dusty flow in a converging diverging nozzle. Predictions are shown to be in excellent agreement with published numerical and/or experimental data.  相似文献   

6.
Clinical imaging in positron emission tomography (PET) is often performed using single-time-point estimates of tracer uptake or static imaging that provides a spatial map of regional tracer concentration. However, dynamic tracer imaging can provide considerably more information about in vivo biology by delineating both the temporal and spatial pattern of tracer uptake. In addition, several potential sources of error that occur in static imaging can be mitigated. This review focuses on the application of dynamic PET imaging to measuring regional cancer biologic features and especially in using dynamic PET imaging for quantitative therapeutic response monitoring for cancer clinical trials. Dynamic PET imaging output parameters, particularly transport (flow) and overall metabolic rate, have provided imaging end points for clinical trials at single-center institutions for years. However, dynamic imaging poses many challenges for multicenter clinical trial implementations from cross-center calibration to the inadequacy of a common informatics infrastructure. Underlying principles and methodology of PET dynamic imaging are first reviewed, followed by an examination of current approaches to dynamic PET image analysis with a specific case example of dynamic fluorothymidine imaging to illustrate the approach.  相似文献   

7.
Crack‐free (100–x) SiO2x SnO2 glass‐ceramic monoliths have been prepared by the sol–gel method obtaining for the first time SnO2 concentrations of 20% with annealing at 1100 °C. Heat‐treatment resulted in the formation and growth of SnO2 nanocrystals within the silica matrices. Combined use of Fourier transform–Raman spectroscopy and in situ high‐temperature X‐Ray diffraction shows that SnO2 particles begin to crystallize in the cassiterite‐type phase at 80 °C and that their average apparent size remains around 7 nm, even after annealing at 1100 °C. Nanocrystal sizes and size distributions determined by low‐wavenumber Raman are in good agreement with those obtained from transmission electron microscopy measurements. Results indicate that the formation and the growth of SnO2 nanocrystals impose a residual porosity in the silica matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Simultaneous imaging of laser-induced fluorescence of toluene and 3-pentanone was used to determine the local absolute oxygen and residual gas concentrations present within an engine. The technique utilizes the different sensitivities of the laser-excited molecules to quenching by molecular oxygen as a means to determine quantitative images of in-cylinder oxygen concentrations. The difference in the amount of oxygen available between two operating conditions was investigated. Results are in agreement with measurements in the exhaust gas. Received: 4 June 2002 / Published online: 8 August 2002  相似文献   

9.
Planar laser-induced fluorescence (PLIF) images of NO concentration are reported in premixed laminar flames from 1–60 bar exciting the A-X(0,0) band. The influence of O2 interference and gas composition, the variation with local temperature, and the effect of laser and signal attenuation by UV light absorption are investigated. Despite choosing a NO excitation and detection scheme with minimum O2-LIF contribution, this interference produces errors of up to 25% in a slightly lean 60 bar flame. The overall dependence of the inferred NO number density with temperature in the relevant (1200–2500 K) range is low (<±15%) because different effects cancel. The attenuation of laser and signal light by combustion products CO2 and H2O is frequently neglected, yet such absorption yields errors of up to 40% in our experiment despite the small scale (8 mm flame diameter). Understanding the dynamic range for each of these corrections provides guidance to minimize errors in single shot imaging experiments at high pressure. Received: 13 May 2002 / Published online: 8 August 2002  相似文献   

10.

Purpose

To detect anti-CEACAM5 targeted superparamagnetic iron oxide (SPIO) particles in vitro on the cell surface by quantitative magnetic resonance (MR) imaging and to compare with flow cytometry.

Materials and Methods

The monoclonal mouse antibody T84.1 and an appropriate IgG isotype antibody were conjugated to dextran-coated SPIO particles. HT29 cells expressing carcinoembryonic antigen (CEACAM5) were treated with antibody-conjugated SPIO particles. Purified cell samples were examined on a 3.0-T MR scanner using a multi-echo spin-echo sequence for MR relaxometry. Aliquots of the cell samples were further treated with a fluorescein isothiocyanate (FITC) anti-dextran antibody and an Alexa Fluor 488 anti-mouse antibody for the corresponding flow cytometry.

Results

MR relaxometry revealed a dose-dependent binding of T84.1-conjugated SPIO particles with a positive correlation between R2 relaxation rate of cell samples and SPIO particle concentration during incubation (r=0.993, P<.01). Positive correlations were also observed between R2 relaxation rate and flow cytometry (geometric mean) with both fluorescent antibodies (r=0.972 and r=0.953, both P<.01), respectively.

Conclusion

The study revealed the feasibility of quantitative MR imaging of targeted SPIO particles on the cell surface comparable to flow cytometry.  相似文献   

11.
A novel temperature-imaging technique based on laser-induced fluorescence of nitric oxide is presented, analyzed and applied. Multi-line rotational thermometry is combined with an efficient spectra-fitting procedure in an imaging configuration. The technique is sensitive over a wide range of temperatures and robustly applicable to different steady combustion and flow systems. Application is shown in premixed and partially premixed ethylene/air Bunsen flames with equivalence ratios between 0.7 and 3.0, and the results are compared to coherent anti-Stokes Raman-scattering temperature measurements. The technique is robust against strong elastic scattering from soot in the rich flames. It yields absolute, quantitative temperature measurements without the necessity of external calibration. PACS 07.20.Dt; 42.62.Fi; 32.50.+d; 33.20.Lg  相似文献   

12.
We have analyzed the image formation and dynamic properties in laser speckle imaging (LSI) both experimentally and with Monte Carlo simulation. We show for the case of a liquid inclusion that the spatial resolution and the signal itself are both significantly affected by scattering from the turbid environment. Multiple scattering leads to blurring of the dynamic inhomogeneity as detected by LSI. The presence of a nonfluctuating component of scattered light results in the significant increase in the measured image contrast and complicates the estimation of the relaxation time. We present a refined processing scheme that allows a correct estimation of the relaxation time from LSI data.  相似文献   

13.
武宇  易仕和  何霖  全鹏程  朱杨柱 《物理学报》2015,64(1):14703-014703
Ma = 3.0的超声速风洞中, 采用NPLS技术对上游边界层为层流的25° 压缩拐角进行了流动显示实验, 获得了压缩拐角的精细流动结构, 边界层、剪切层和激波等结构清晰可见. 基于流动显示数据, 采用间歇性、空间相关性和分形分析对流动结构进行了定量研究, 计算了边界层和分离区的间歇因子分布, 获取了边界层中拟序结构和结构角的大小, 给出了边界层分形维数的分布, 并与Ringuette和Bookey等的实验结果进行比较, 阐述了压缩拐角流动结构的定量特征.  相似文献   

14.
A theoretical model has been proposed for describing the plastic flow and fracture of amorphous intercrystalline layers in ceramic nanocomposites. The mechanism of plastic deformation has been considered as homogeneous nucleation and growth of liquidlike phase inclusions subjected to plastic shear. It has been demonstrated using a nanoceramic material consisting of TiN nanocrystallites and Si3N4 amorphous layers as an example that, when the length of the amorphous layer is reached and a considerable dislocation charge is accumulated, these inclusions induce the formation and growth of Mode I–II cracks in neighboring amorphous layers. In this case, the possibility of opening and growing the crack depends very strongly on the test temperature, the layer orientation, and the size of nanoceramic grains. An increase in the temperature and the angle of orientation and a decrease in the size of nanoceramic grains favor an increase in the crack resistance.  相似文献   

15.
Zeng Y  Jiang L  Zheng W  Li D  Yao S  Qu JY 《Optics letters》2011,36(12):2236-2238
Droplet-based microfluidic systems enable miniaturization of chemical reactions in femtoliter to picoliter volume compartments. Quantifying mixing dynamics of the reagents in droplets is critical to determine the system performance. In this Letter, we developed a two-photon excitation fluorescence lifetime imaging technique to quantitatively image the mixing dynamics in micro?uidic droplets. A cross/autocorrelation method was used to reconstruct a high-quality fluorescence lifetime image of the droplet. The fluorescence decay was analyzed for accurate determination of the mixing ratio at each pixel of the image.  相似文献   

16.
17.
This paper describes PIV measurements ofthe flow field in a micro round tube with an internal diameter of 100 μm in order to examine micro-scale effects. Since the refractive index of the micro tube almost corresponds to that of water, the inner flow in the tube can be observed clearly. The micro PIV system has been developed using a microscope, a high sensitive CCD camera, a double pulsed Nd:YAG laser and optics. Applying the micro PIV technique to the flow, the velocity distributions with spatial resolution of 1.8 × 1.8 μm were measured even near the wall in the center plane of the round tube. It was found that the velocities near the tube wall were smaller than the theoretical values calculated by using Poiseuille’s law. It is believed that this disparity is due to micro-scale effects such as interference between particles and the wall, friction at the wall, surface tension and so on.  相似文献   

18.
Ceramic monoliths, comprising arrays of parallel channels, are increasingly being considered as an alternative to conventional packed beds for chemical processing operations involving both single- and two-phase flows. This paper reports results obtained using a technique based on the rapid acquisition with relaxation enhancement (RARE) pulse sequence in which multiple images are obtained from a single r.f. excitation. The technique is applied to study single- and two-phase flow in a monolith rated at 200 channels per square inch (cpsi). A single image frame, acquired in 156 ms, provides a characterization of the heterogeneity in the magnitude and direction of the flow within the monolith.  相似文献   

19.
In this paper we provide functional forms for Laser Doppler Velocimetry (LDV) and Diffusing Wave Spectroscopy (DWS) based on multiply scattered light by a random distribution of moving anisotropic centres. These results are based on statistical models and applied to single shear flows or random flows, and are compared to Monte Carlo simulations and in vitro experiments in back-scattered geometry. Finally LDV and DWS results are used to characterise red blood cell aggregation and to determine the perfusion flow rate of various human tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号