首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Solid-phase condensation of rhodium(III) aqua sulfates yielding oligomeric rhodium(III) aqua sulfate complexes was revealed. The isothermal dehydration of rhodium(III) aqua sulfates under thermal diffusion conditions in the temperature range 100–130°C was studied, and effective rate constants and activation energies were determined. The solid phases of dehydration products were studied by X-ray powder diffraction and IR spectroscopy, and solutions of polymeric phases were studied by 103Rh and 17O NMR, electronic absorption spectroscopy, chromatography, and electrophoresis.  相似文献   

2.
31P, 17O, and 103Rh NMR spectroscopy shows that rhodium(III) reacts with phosphoric acid to generate polynuclear aquaphosphate complexes in which phosphate ions mostly have a bridging function. Assignment of 103Rh NMR signals in dominant rhodium complexes is suggested.  相似文献   

3.
The extraction of rhodium(III) with 1,3-diamyl-2-imidazolidinethione from hydrochloric acid solutions was studied. Optimum conditions for rhodium(III) extraction were determined. It was found that rhodium(III) was extracted from a 0.5 M solution of HCl at a phase contact time of 3 h by a coordination mechanism. The composition of the extracted compound was determined using electronic, 1H and 13C NMR, and IR spectroscopy and elemental analysis. It was demonstrated that the extracting agent coordinated to the rhodium(III) ion through the sulfur atom.  相似文献   

4.
The extraction of rhodium(III) with a bisacylated diethylenetriamine derivative from hydrochloric acid solutions was studied. Optimum conditions for rhodium(III) extraction were determined. It was found that, at a contact time to 10 min, the extraction occurred by an ion-association mechanism. At a contact time longer than 10 min, rhodium(III) was extracted by a mixed mechanism with the insertion of an extractant molecule into the inner coordination sphere of the rhodium(III) ion. The composition of the extracted compound was determined using electronic, 1H and 13C NMR, and IR spectroscopy and elemental analysis, and the structure of this compound was proposed.  相似文献   

5.
By virtue of 103Rh-, 17O-NMR, electrophoresis in agarose gel, and pH-metry, we report on the formation of rhodium(III) sulfate complexes in aqueous solutions. At higher concentrations of sulfuric acid (above 3 M), more than 90% of metal was found to stay in the state of symmetric polynuclear complexes containing magnetically equivalent rhodium atoms. We also labeled the 103Rh-NMR chemical shifts for the complexes with 3, 4 and 6 metal atoms in the spectra.  相似文献   

6.
Two new half‐sandwich η5‐Cp*–rhodium(III) and η5‐Cp*–ruthenium(II) complexes have been prepared from corresponding bis(phosphino)amine ligands, thiophene‐2‐(N,N‐bis(diphenylphosphino)methylamine) or furfuryl‐2‐(N,N‐bis(diphenylphosphino)amine). Structures of the new complexes have been elucidated by multinuclear one‐ and two‐dimensional NMR spectroscopy, elemental analysis and IR spectroscopy. These Cp*–rhodium(III) and Cp*‐ruthenium(II) complexes bearing bis(phosphino)amine ligands were successfully applied to transfer hydrogenation of various ketones by 2‐propanol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Liquid-liquid extraction of rhodium(III) from hydrochloric acid solutions with a 1,2,4-triazole derivative was studied. Optimal conditions for its recovery were found. Rhodium(III) was shown to be recovered in extraction system by ion-exchange reaction at the time of phase contact not longer than 5 min. When phase contact time increased, rhodium(III) is extracted by a mixed mechanism with simultaneous insertion of two extractant molecules into the inner coordination sphere of rhodium(III) ion. Composition of coordination species of recovered compounds was established by electronic, IR, 1H and 13C NMR spectroscopy and functional analysis, the structure of the coordination species is proposed.  相似文献   

8.
We report full details of the synthesis and characterization of monohydride-dichloro rhodium(III) complexes bearing chiral diphosphine ligands, such as (S)-BINAP, (S)-DM-SEGPHOS, and (S)-DTBM-SEGPHOS, producing cationic triply chloride bridged dinuclear rhodium(III) complexes ( 1 a : (S)-BINAP; 1 b : (S)-DM-SEGPHOS) and a neutral mononuclear monohydride-dichloro rhodium(III) complex ( 1 c : (S)-DTBM-SEGPHOS) in high yield and high purity. Their solid state structure and solution behavior were determined by crystallographic studies as well as full spectral data, including DOSY NMR spectroscopy. Among these three complexes, 1 c has a rigid pocket surrounded by two chloride atoms bound to the rhodium atom together with one tBu group of (S)-DTBM-SEGPHOS for fitting to simple olefins without any coordinating functional groups. Complex 1 c exhibited superior catalytic activity and enantioselectivity for asymmetric hydrogenation of exo-olefins and olefinic substrates. The catalytic activity of 1 c was compared with that of well-demonstrated dihydride species derived in situ from rhodium(I) precursors such as [Rh(cod)Cl]2 and [Rh(cod)2]+[BF4] upon mixing with (S)-DTBM-SEGPHOS under dihydrogen.  相似文献   

9.
Extraction of rhodium(III) from hydrochloric acid solutions with dihexyl sulfoxide (DHSO) and with petroleum sulfoxides (PSOs) was studied, and the optimal conditions for its recovery were found. At a phase contact time of up to 0.5 h, the extraction of rhodium(III) with sulfoxides occurred mainly by an ionassociation scenario. If the phase contact time exceeds 0.5 h, a mixed extraction scenario predominated to form the extracted complexes (L · H+) · [RhCl4L2]-(DHSO)o and PSO (LH+) · [RhCl4(H2O) · L]. The protonation of the extraction agents occurred at the donor oxygen atoms of the sulfoxide group. When rhodium was extracted with PSOs, the coordination of the extractant molecule in the inner coordination sphere of the acido complex to the metal ion occurred through the donor sulfur atom of the sulfoxide group, while with the use of DHSO, through the donor atoms of sulfur and oxygen of the sulfoxide group. Electronic, 1H NMR, and IR spectroscopy and elemental analysis were used to determine the composition of the extracted compounds and suggest their structure.  相似文献   

10.
A 13C and 19F NMR study of twenty-four ruthenium, rhodium, palladium and platinum complexes containing a difluoromethyl or a trifluoromethyl substitutent(R′) on the monothio-β-diketone, RCSCH2COR′, is reported. The R-substituents are 2′-thienyl, 2′-naphthyl, phenyl, p-fluorophenyl or p-methylphenyl. The 13C NMR data show the chemical shift of the diketonate ring carbons to be geometry dependent. Similarly, the 19F NMR spectra show chemical shift data which are also metal dependent. The thiocarbonyl and methine carbon's shieldings are also dependent on the nature of the R-group. The rhodium and platinum complexes show carbon-metal and carbon-fluorine spin coupling. The paramagnetic ruthenium(III) complexes give 19F NMR spectral resonances which are broad and shifted upfield from the corresponding diamagnetic rhodium, palladium and platinum complexes. 13C and 19F NMR data supports a facial octahedral geometry for the rhodium(III) complexes.  相似文献   

11.
Solvent extraction of rhodium,ruthenium, and iridium with HDEHP   总被引:1,自引:0,他引:1  
Solvent extraction of rhodium, ruthenium, and iridium with HDEHP from thioureachloride media was investigated. Under the conditions ([Cl]=0.50 M, [HDEHP]=1.0M, [SC(NH2)2]=0.50M, pH=4.50, phase contact time 1 min), Rh(III) is extracted 88.3%, Ru(III) and Ir(III) 40.8% and 28.5% respectively at phase ratio 11. The formation of rhodium-thiourea complexes in aqueous solutions, even at 5M chloride concentration, with the possible composition Rh[SC (NH2)2]6 3+ is confirmed by the observed molar ratio of thiourea to rhodium and UV-spectra.  相似文献   

12.
Mixtures of iridium(IV) and rhodium(III) as IrCl2-6 and RhCl3-6 are separated by ion flotation. The iridium(IV) is selectively floated from aqueous solutions of pH 2 and 0.05% Ce(IV) with either hexadecyltripropylammonium bromide (HTPAB) or hexadecyltributylammonium bromide (HTBAB). The rhodium(III) does not float under the same conditions. The floated iridium sublate is collected in n-butyl acetate without contamination by the unfloated rhodium. Data are presented also for the separation and recovery of the Ir(IV) and Rh(III) with the above surfactants, hexadecyltrimethyl-ammonium bromide (HTMAB) and hexadecyltriethylammonium bromide (HTEAB) from solutions of various sodium chloride and hydrochloric acid concentrations. The use of solvent sublation for recovering the floated iridium is examined. The separation is fast, practical, simple and does not require expensive reagents or apparatus. For these reasons, the separation of iridium and rhodium by ion flotation offers advantages over previous methods.  相似文献   

13.
The formation of rhodium(III) sulfate complexes under moderately rigorous temperature conditions was studied by 103Rh and 17O NMR spectroscopy. The complexes [Rh2(μ-SO4)2(H2O)8]2+, [Rh2(*μ-SO4)(H2O)8]4+, and [Rh3(μ-SO4)3(μ-OH)(H2O)10]2+ were found to be the most stable species in aged solutions.  相似文献   

14.
Speciation of rhodium(III) in different acidic media has been studied by capillary zone electrophoresis (CZE). Depending on the nature of the acid, rhodium was shown to occur in the form of positive, neutral and/or negatively charged complexes. The relationship between the distribution of rhodium forms and its catalytic action on the oxidation of N-methyldiphenylamine-4-sulfonic acid by periodate ions has been investigated. It was found that only positively charged complexes of rhodium, such as those dominating in perchloric acid solutions, catalyzed a given reaction to form a colored oxidation product. The rate of the catalyzed reaction was optimized with respect to the pH, reagent and oxidant concentration levels, ionic strength, concentration of the catalyst, as well as the presence of interfering ions. The developed kinetic spectrophotometric method features rather high sensitivity (limit of determination 10 μg l−1) and tolerance for most platinum metals and was applied to a complex industrial sample of a platinum concentrate.  相似文献   

15.
Chloro axially-substituted octa(4-isopropylphenoxy)rhodium(III)phthalocyanine, (R)8PcRhCl (3), was reacted with the nitrogenous bases pyridine (Py) and pyrazine (Pyz) to give the axially-disubstituted octa(4-isopropylphenoxy)rhodium(III)phthalocyanines [(R)8PcRhCl(L)] (4) and (5), L = (Py) and (Pyz), respectively. In this study, the fluorescence quantum yield (ΦF), the phosphorescence quantum yield (Φphos) and the photodegradation quantum yield (Φpd) values for the newly synthesized rhodium phthalocyanine complexes (RhPcs) 4 and 5 are reported. The complexes have also been fully characterized by elemental analysis, FD mass spectrometry, FT-IR and 1H NMR spectroscopy.  相似文献   

16.
In this work, four new Nd (III) and Sm (III) complexes of two pentadendate ligands (L1 and L2) were prepared and their molecular structures were determined by single crystal X‐ray diffraction studies. X‐ray analysis showed that the Nd (III) and Sm (III) complexes of L1 sits on a twofold crystallographic axis while the complexes of L2 does not show crystallographically imposed symmetry. Absorption and photoluminescence properties of the complexes were studied both in the solid state and DMF solutions. The fluorescence sensing of nitro‐aromatic compounds [nitrobenzene (NB), 4‐nitrophenol (NP), 2,4‐dinitrophenol (DNP) and 2,4,6‐trinitrophenol (TNP)] were studied by photoluminescence spectroscopy. All four complexes showed better sensitivity towards nitrophenol (NP) with low LOD values.  相似文献   

17.
Dioxygen is used as the oxygenation agent in the rhodium‐mediated conversion of nitriles into amides. The characterization of intermediate species and model compounds as well as isotope‐labeling studies provided an insight into the reaction mechanism. The conversions of rhodium hydroperoxido or methylperoxido complexes with nitriles into metallacyclic rhodium‐ κ2‐(N,O)‐peroxyimidate compounds represent essential key steps. The former are accessible from a rhodium(III) peroxido complex and the latter represent rhodium derivatives of Payne’s reagent (peroxyimidic acids).  相似文献   

18.
A number of new nitrosoarene complexes of rhodium(I) and iridium(I) have been prepared, and characterized by elemental analysis, IR spectroscopy and 1H NMR spectroscopy. Some reactions of the complexes have been studied.  相似文献   

19.
Fast atom bombardment mass spectra of cationic iridium(III) and rhodium(III) coordination complexes (M+Cl2L2, X?; where the ligand L is a dinitrogenous aromatic system) have been obtained with thioglycerol, glycerol or tetraglyme as a matrix. Two kinds of reactions, initiated by particle bombardment, have been discovered between these complexes and the matrix. First, with thioglycerol one or two chlorine atoms are substituted by a thioglycerol radical, more rapidly for rhodium compounds; secondly, when the ligand L possesses a diazo function, this function is hydrogenated depending on the ability of the matrix to generate hydrogen radicals by bombardment.  相似文献   

20.
Summary Mono, bis and tris complexes of rhodium(III) with phenyl-2-picolylketone-2-pyridyl hydrazone (PPKPyH) have been characterized. In every case, the imino-proton of PPKPyH shows marked acidity associated with the coordination to rhodium(III). Electronic spectra show that all complexes are octahedral. The B-values suggest a strong covalency in the metal-ligand -bond and the Dq-values indicate a medium-strong ligand field. The magnetic susceptibility indicates that PPKPyH forms low-spin complexes with rhodium(III).1H n.m.r. spectra show that the tris(ligand) complexes arecis isomers. I.r. spectra show that the ligand is neutral or monobasic tridentate or bidentate. Far i.r. studies show that [Rh(PPKPyH)X3] · 2 H2O (X = Cl, Br or I) aremer isomers. The effect of pH variation on the rection products is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号