首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study a number of properties of a simple random growing directed network which can be used to model real directed networks such as the world-wide web and call graphs. We confirm numerically that the distributions of in- and out-degree are consistent with a power law, in agreement with previous analytical results and with empirical measurements from real graphs. We study the distribution and mean of the minimum path length, the high degree nodes, the appearance and size of the giant component and the topology of the nodes outside the giant component. These properties are compared with empirical studies of the world-wide web. Received 15 June 2001 and Received in final form 12 July 2001  相似文献   

2.
The “power of choice” has been shown to radically alter the behavior of a number of randomized algorithms. Here we explore the effects of choice on models of random tree growth. In our models each new node has k randomly chosen contacts, where k > 1 is a constant. It then attaches to whichever one of these contacts is most desirable in some sense, such as its distance from the root or its degree. Even when the new node has just two choices, i.e., when k = 2, the resulting tree can be very different from a random graph or tree. For instance, if the new node attaches to the contact which is closest to the root of the tree, the distribution of depths changes from Poisson to a traveling wave solution. If the new node attaches to the contact with the smallest degree, the degree distribution is closer to uniform than in a random graph, so that with high probability there are no nodes in the tree with degree greater than O(log log N). Finally, if the new node attaches to the contact with the largest degree, we find that the degree distribution is a power law with exponent -1 up to degrees roughly equal to k, with an exponential cutoff beyond that; thus, in this case, we need k ≫ 1 to see a power law over a wide range of degrees.  相似文献   

3.
We present an analytic investigation of the signal-to-noise ratio (SNR) by studying the bistable sawtooth system driven by correlated Gaussian white noises. The analytic expression of SNR is obtained. Based on it, we detect the phenomenon of stochastic multiresonance, which arises from the dependence of SNR upon the noises correlation coefficient. Furthermore, there exists not only resonance, but also suppression in the SNRD (the additive noise intensity) curve and the SNRQ (the multiplicative noise intensity) curve. Received 26 February 2002 / Received in final form 12 July 2002 Published online 17 September 2002  相似文献   

4.
Multi-species reaction-diffusion systems, with nearest-neighbor interaction on a one-dimensional lattice are considered. Necessary and sufficient constraints on the interaction rates are obtained, that guarantee the closedness of the time evolution equation for E n(t)'s, the expectation value of the product of certain linear combination of the number operators on n consecutive sites at time t. The constraints are solved for the single-species left-right-symmetric systems. Also, examples of multi-species system for which the evolution equations of E n(t)'s are closed, are given. Received 25 September 2002 / Received in final form 3 December 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: mamwad@iasbs.ac.ir  相似文献   

5.
The relative escape rate (RER) for Brownian particles in an asymmetric bistable sawtooth potential driven by cross correlations between multiplicative white noise and additive white noise is studied. A new expression of the mean first-passage time is derived under the condition of piecewise linear potentials and discontinuous diffusion function. Based on the results of RER numerically calculated, it is found that (i) under positively correlated noises action (i.e. λ > 0, and λ is the correlation strength), the escape rate exhibits the suppression platform as the intensity of multiplicative noise varies. The effect of suppression becomes more pronounced with the growth of height of the deterministic potential barrier for transition, and with the increase of λ. However, for the case of uncorrelated noises (λ = 0) and of negatively correlated noises (λ < 0), the suppression platform disappears. (ii) The positive correlation between noises amplifies the change of the escape rate with the height of barrier for transition, while the negative correlation between noises suppresses this change. Received 20 November 2002 / Received in final form 19 October 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: kmdcmei@public.km.yn.cn  相似文献   

6.
We consider two-particle dispersion in a velocity field, where the relative two-point velocity scales according to v 2(r) ∝r α and the corresponding correlation time scales as τ(r) ∝r β, and fix α = 2/3, as typical for turbulent flows. We show that two generic types of dispersion behavior arize: For α/2 + β < 1 the correlations in relative velocities decouple and the diffusion approximation holds. In the opposite case, α/2 + β > 1, the relative motion is strongly correlated. The case of Kolmogorov flows corresponds to a marginal, nongeneric situation. In this case, depending on the particular parameters of the flow, the dispersion behavior can be rather diffusive or rather ballistic. Received 13 March 2001  相似文献   

7.
A new and general approach is proposed to analyze the dynamics of a colloidal particle interacting with a nearby wall. This analysis can be used to determine the acting forces even when the system is non-stationary. As an illustration, we use total internal reflection microscopy to investigate the forces acting on a polystyrene sulfate latex particle as it is receding from a charged glass surface. Received 10 October 2002 Published online: 16 April 2003 RID="a" ID="a"Present address: Department of Polymer Physics, BASF Aktiengesellschaft, 67056 Ludwigshafen, Germany RID="b" ID="b"Present address: Arryx. Inc., Chicago, IL 60601, USA  相似文献   

8.
We investigate random walks on a lattice with imperfect traps. In one dimension, we perturbatively compute the survival probability by reducing the problem to a particle diffusing on a closed ring containing just one single trap. Numerical simulations reveal this solution, which is exact in the limit of perfect traps, to be remarkably robust with respect to a significant lowering of the trapping probability. We demonstrate that for randomly distributed traps, the long-time asymptotics of our result recovers the known stretched exponential decay. We also study an anisotropic three-dimensional version of our model. We discuss possible applications of some of our findings to the decay of excitons in semiconducting organic polymer materials, and emphasize the crucial influence of the spatial trap distribution on the kinetics. Received 23 July 2001 / Received in final form 14 May 2002 Published online 13 August 2002  相似文献   

9.
We analyze the relaxation behavior of a bistable system when the background temperature profile is inhomogeneous due to the presence of a localized hot region (blowtorch) on one side of the potential barrier. Since the diffusion equation for inhomogeneous medium is model-dependent, we consider two physical models to study the kinetics of such system. Using a conventional stochastic method, we obtain the escape and equilibration rates of the system for the two physical models. For both models, we find that the hot region enhances the escape rate from the well where it is placed while it retards the escape rate from the other well. However, the value of the escape rate from the well where the hot region is placed differs for the two models while that of the escape rate from the other well is identical for both. This work, for the first time, gives a detailed report of the similarities and differences of the escape rates and, hence, exposes the common and distinct features of the two known physical models in determining the way the bistable system relaxes. Received 25 September 2001  相似文献   

10.
The most general reaction-diffusion model on a Cayley tree with nearest-neighbor interactions is introduced, which can be solved exactly through the empty-interval method. The stationary solutions of such models, as well as their dynamics, are discussed. Concerning the dynamics, the spectrum of the evolution Hamiltonian is found and shown to be discrete, hence there is a finite relaxation time in the evolution of the system towards its stationary state.  相似文献   

11.
12.
It is shown that multifractal properties of some random and disordered systems can be simulated using thermodynamics of a generalized ideal monoatomic gas in a fractal phase space. Received 25 November 1998 and Received in final form 16 December 1998  相似文献   

13.
A system of particles is studied in which the stochastic processes are one-particle type-change (or one-particle diffusion) and multi-particle annihilation. It is shown that, if the annihilation rate tends to zero but the initial values of the average number of the particles tend to infinity, so that the annihilation rate times a certain power of the initial values of the average number of the particles remain constant (the double scaling) then if the initial state of the system is a multi-Poisson distribution, the system always remains in a state of multi-Poisson distribution, but with evolving parameters. The large time behavior of the system is also investigated. The system exhibits a dynamical phase transition. It is seen that for a k-particle annihilation, if k is larger than a critical value kc, which is determined by the type-change rates, then annihilation does not enter the relaxation exponent of the system; while for k < kc, it is the annihilation (in fact k itself) which determines the relaxation exponent.  相似文献   

14.
15.
The Krauss-model is a stochastic model for traffic flow which is continuous in space. For periodic boundary conditions it is well understood and known to display a non-unique flow-density relation (fundamental diagram) for certain densities. In many applications, however, the behaviour under open boundary conditions plays a crucial role. In contrast to all models investigated so far, the high flow states of the Krauss-model are not metastable, but also stable. Nevertheless we find that the current in open systems obeys an extremal principle introduced for the case of simpler discrete models. The phase diagram of the open system will be completely determined by the fundamental diagram of the periodic system through this principle. In order to allow the investigation of the whole state space of the Krauss-model, appropriate strategies for the injection of cars into the system are needed. Two methods solving this problem are discussed and the boundary-induced phase transitions for both methods are studied. We also suggest a supplementary rule for the extremal principle to account for cases where not all the possible bulk states are generated by the chosen boundary conditions. Received 16 September 2002 / Received in final form 4 November 2002 Published online 31 December 2002  相似文献   

16.
The spatially one-dimensional relativistic Ornstein-Uhlenbeck process is studied in an arbitrary inertial reference frame. In particular, we derive directly from the stochastic equations of motion in an arbitrary inertial frame the transport equation for the distribution function of the diffusing particles in phase-space. We explain why this result is not trivial and has, at the very least, methodological interest. We also show that this result offers a conceptually new proof of the well-known fact that the relativistic one-particle distribution function in phase-space is a Lorentz scalar. Received 28 March 2000  相似文献   

17.
We investigate the quantum-mechanical tunneling between the “patterns" of the, so-called, associative neural networks. Being the relatively stable minima of the “configuration-energy" space of the networks, the “patterns" represent the macroscopically distinguishable states of the neural nets. Therefore, the tunneling represents a macroscopic quantum effect, but with some special characteristics. Particularly, we investigate the tunneling between the minima of approximately equal depth, thus requiring no energy exchange. If there are at least a few such minima, the tunneling represents a sort of the “random walk" process, which implies the quantum fluctuations in the system, and therefore “malfunctioning" in the information processing of the nets. Due to the finite number of the minima, the “random walk" reduces to a dynamics modeled by the, so-called, Pauli master equation. With some plausible assumptions, the set(s) of the Pauli master equations can be analytically solved. This way comes the main result of this paper: the quantum fluctuations due to the quantum-mechanical tunneling can be “minimized" if the “pattern"-formation is such that there are mutually “distant" groups of the “patterns", thus providing the “zone" structure of the “pattern" formation. This qualitative result can be considered as a basis of the efficient deterministic functioning of the associative neural nets. Received 15 July 1999  相似文献   

18.
We consider three examples of dissipative dynamical systems involving many degrees of freedom, driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties of the injected and dissipated power as well as the fluctuations of the total energy of these systems. The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they involve different types of forcing and dissipation, we show that the statistics of the injected power obey the “fluctuation theorem" demonstrated in the case of time reversible dissipative systems maintained at constant total energy, or in the case of some stochastic processes. Although this may be only a consequence of the theory of large deviations, this allows a possible definition of “temperature" for a dissipative system out of equilibrium. We consider how this “temperature" scales with the energy and the number of degrees of freedom in the different systems under consideration. Received 26 June 2000 and Received in final form 24 October 2000  相似文献   

19.
Distribution of loops in a one-dimensional random walk (RW), or, equivalently, neutral segments in a sequence of positive and negative charges is important for understanding the low energy states of randomly charged polymers. We investigate numerically and analytically loops in several types of RWs, including RWs with continuous step-length distribution. We show that for long walks the probability density of the longest loop becomes independent of the details of the walks and definition of the loops. We investigate crossovers and convergence of probability densities to the limiting behavior, and obtain some of the analytical properties of the universal probability density. Received 8 January 1999  相似文献   

20.
This erratum corrects a mistake in reference [E. Scalas, U. Garibaldi, S. Donadio, Eur. Phys. J. B 53, 267 (2006)]. In that paper, we needed an aperiodic version of the BDY game, but, in formula (1), we incorrectly presented a periodic transition matrix of period 2 in the special case of g = 2 agents. Here, we present the right aperiodic version.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号