首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavior of boundary arcs for control systems is investigated when the systems are governed by integral equations of the Volterra type. The main result is in the form of a maximum principle. This result is then used to obtain necessary conditions for a minimum control problem.  相似文献   

2.
We consider a fully discrete qualocation method for Symm’s integral equation. The method is that of Sloan and Burn (1992), for which a complete analysis is available in the case of smooth curves. The convergence for smooth curves can be improved by a subtraction of singularity (Jeon and Kimn, 1996). In this paper we extend these results for smooth boundaries to polygonal boundaries. The analysis uses a mesh grading transformation method for Symm’s integral equation, as in Elschner and Graham (1995) and Elschner and Stephan (1996), to overcome the singular behavior of solutions at corners. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
关于时间调和声波在一个无限长圆柱形导体上的散射,可以转化为R2中一段光滑开弧上的散射问题.利用单双层位势来逼近散射波,通过单双层位势在开弧两侧的跳跃关系建立了混合边界的积分方程组,然后对此方程组进行参数化和离散化,最终得到离散化后的积分方程组.此边界积分方程组的解是存在唯一的.  相似文献   

4.
We propose and analyze a spectral Jacobi-collocation approximation for the linear Volterra integral equations (VIEs) of the second kind with weakly singular kernels. In this work, we consider the case when the underlying solutions of the VIEs are sufficiently smooth. In this case, we provide a rigorous error analysis for the proposed method, which shows that the numerical errors decay exponentially in the infinity norm and weighted Sobolev space norms. Numerical results are presented to confirm the theoretical prediction of the exponential rate of convergence.  相似文献   

5.
This paper presents the mechanical quadrature methods (MQMs) for solving boundary integral equations (BIEs) of the first kind on open arcs. The spectral condition number of MQMs is only O(h−1), where h is the maximal mesh width. The errors of MQMs have multivariate asymptotic expansions, accompanied with for all mesh widths hi. Hence, once discrete equations with coarse meshes are solved in parallel, the accuracy order of numerical approximations can be greatly improved by splitting extrapolation algorithms (SEAs). Moreover, a posteriori asymptotic error estimates are derived, which can be used to formulate self-adaptive algorithms. Numerical examples are also provided to support our algorithms and analysis. Furthermore, compared with the existing algorithms, such as Galerkin and collocation methods, the accuracy order of the MQMs is higher, and the discrete matrix entries are explicit, to prove that the MQMs in this paper are more promising and beneficial to practical applications.  相似文献   

6.
Reducible quadrature rules generated by boundary value methods are considered in block version and applied to solve the second kind Volterra integral equations and Volterra integro-differential equations. These extended block boundary value methods are shown to possess both excellent stability properties and high accuracy for Volterra-type equations. Numerical experiments are presented and the efficiency, accuracy and stability of the schemes are confirmed.  相似文献   

7.
Boundary value problems of the third kind are converted into boundary integral equations of the second kind with periodic logarithmic kernels by using Green's formulas. For solving the induced boundary integral equations, a Nyström scheme and its extrapolation method are derived for periodic Fredholm integral equations of the second kind with logarithmic singularity. Asymptotic expansions for the approximate solutions obtained by the Nyström scheme are developed to analyze the extrapolation method. Some computational aspects of the methods are considered, and two numerical examples are given to illustrate the acceleration of convergence.

  相似文献   


8.
In this paper fast implicit and explicit Runge–Kutta methods for systems of Volterra integral equations of Hammerstein type are constructed. The coefficients of the methods are expressed in terms of the values of the Laplace transform of the kernel. These methods have been suitably constructed in order to be implemented in an efficient way, thus leading to a very low computational cost both in time and in space. The order of convergence of the constructed methods is studied. The numerical experiments confirm the expected accuracy and computational cost. AMS subject classification (2000)  65R20, 45D05, 44A35, 44A10  相似文献   

9.
In this paper we propose a fully discretized version of the collocation method applied to integral equations of the first kind with logarithmic kernel. After a stability and convergence analysis is given, we prove the existence of an asymptotic expansion of the error, which justifies the use of Richardson extrapolation. We further show how these expansions can be translated to a new expansion of potentials calculated with the numerical solution of a boundary integral equation such as those treated before. Some numerical experiments, confirming our theoretical results, are given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
In this paper we shall investigate the numerical solution of two-dimensional Fredholm integral equations by Nyström and collocation methods based on the zeros of Jacobi orthogonal polynomials. The convergence, stability and well conditioning of the method are proved in suitable weighted spaces of functions. Some numerical examples illustrate the efficiency of the methods.  相似文献   

11.
讨论了伴有边界摄动的二阶非线性Volterra型积分微分方程组的奇摄动.在适当的条件下,利用对角化技巧证明了解的存在性,构造出解的渐近展开式并给出余项的一致有效估计.  相似文献   

12.
In this paper, boundary integral formulations for a time‐harmonic acoustic scattering‐resonance problem are analyzed. The eigenvalues of eigenvalue problems resulting from boundary integral formulations for scattering‐resonance problems split in general into two parts. One part consists of scattering‐resonances, and the other one corresponds to eigenvalues of some Laplacian eigenvalue problem for the interior of the scatterer. The proposed combined boundary integral formulations enable a better separation of the unwanted spectrum from the scattering‐resonances, which allows in practical computations a reliable and simple identification of the scattering‐resonances in particular for non‐convex domains. The convergence of conforming Galerkin boundary element approximations for the combined boundary integral formulations of the resonance problem is shown in canonical trace spaces. Numerical experiments confirm the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
We discuss the application of integral equations techniques to two broad areas of particle statistics, namely, stereology and packing. Problems in stereology lead to the inversion of Abel-type integral equations; and we present a brief survey of existing methods, analytical and numerical, for doing this. Packing problems lead to Volterra equations which, in simple cases, can be solved exactly and, in other cases, need to be solved numerically. Methods for doing this are presented along with some numerical results.  相似文献   

14.
** Email: alok{at}math.iisc.ernet.in Direct function theoretic methods are developed to handle twoweakly singular integral equations with their kernels havinglogarithmic singularity. The present methods avoid the occurrenceof higher-order (or strong) singularities, like the Cauchy typesingularity in the representation of the solutions of such integralequations.  相似文献   

15.
The theory of singular integral equations is used to derive simple inversion formulas for a logarithmic operator defined on a contour consisting of an arbitrary number of identical arcs lying on a circle at an equal angular spacing. The action of the inverse operator on trigonometric functions is calculated, and the moments of the inverse operator with trigonometric functions are found. Even simpler formulas are derived in the approximation of small arcs.  相似文献   

16.
We investigate the class of general linear methods of order p and stage order q=p for the numerical solution of Volterra integral equations of the second kind. Construction of highly stable methods based on the Schur criterion is described and examples of methods of order one and two which have good stability properties with respect to the basic test equation and the convolution one are given.  相似文献   

17.
During the last decade or two, significant progress has been made in the development of imbedding methods for the analytical and computational treatment of integral equations. These methods are now well known in radiative transfer, neutron transport, optimal filtering, and other fields. In this review paper, we describe the current status of imbedding methods for integral equations. The paper emphasizes new analytical and computational developments in control and filtering, multiple scattering, inverse problems of wave propagation, and solid and fluid mechanics. Efficient computer programs for the determination of complex eigenvalues of integral operators, analytical investigations of stability for significant underlying Riccati integrodifferential equations, and comparisons against other methods are described.  相似文献   

18.
A Dirichlet problem is considered in a three-dimensional domain filled with a piecewise homogeneous medium. The uniqueness of its solution is proved. A system of Fredholm boundary integral equations of the second kind is constructed using the method of surface potentials, and a system of boundary integral equations of the first kind is derived directly from Green’s identity. A technique for the numerical solution of integral equations is proposed, and results of numerical experiments are presented.  相似文献   

19.
New and effective quadrature rules generated by boundary value methods are introduced. We employ the introduced quadrature rules to construct quadrature methods for the second kind Volterra integral equations and Volterra integro-differential equations. These methods are shown to be effective and possess excellent convergence properties. The nonlinear multigrid method is applied to solve the discrete systems derived from the introduced numerical scheme. Numerical simulations are presented and confirm the efficiency and accuracy of the methods.  相似文献   

20.
We develop a fast fully discrete Fourier-Galerkin method for solving a class of singular boundary integral equations. We prove that the number of multiplications used in generating the compressed matrix is O(nlog3n), and the solution of the proposed method preserves the optimal convergence order O(nt), where n is the order of the Fourier basis functions used in the method and t denotes the degree of regularity of the exact solution. Moreover, we propose a preconditioning which ensures the numerical stability when solving the preconditioned linear system. Numerical examples are presented to confirm the theoretical estimates and to demonstrate the approximation accuracy and computational efficiency of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号