首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purple membrane (PM) fragments were adsorbed on a dioleoylphosphatidylcholine (DOPC) monolayer and on a mixed alkanethiol/DOPC bilayer supported by mercury to investigate the kinetics of light-driven proton transport by bacteriorhodopsin (bR). The light-on and light-off capacitive currents on an alkanethiol/DOPC bilayer at pH 6.4 were interpreted on the basis of a simple equivalent circuit. The pH dependence of the biphasic decay kinetics of the light-on currents was analyzed to estimate the pK(a) values for the transitions releasing protons to, and taking up protons from, the solution. The linear dependence of the stationary light-on current of bR on a DOPC monolayer self-assembled on mercury upon the applied potential was interpreted on the basis of an equivalent circuit.  相似文献   

2.
Membrane fragments containing bacteriorhodopsin (bR), a light-driven proton pump, are adsorbed on mercury-supported biomimetic membranes. The biomimetic membranes consist in a phospholipid monolayer and an alkanethiol/phospholipid bilayer supported by a hanging mercury drop electrode. Once adsorbed on the lipid film, bR is activated by shining the mercury drop with an appropriate light source, and the transient capacitive current generated by the ion pump is measured under short-circuit conditions and in the absence of photoartefacts. Our results show that the lipid-coated mercury electrode is suitable for adsorbing membrane fragments and, hence, for studying the electrochemical behaviour of protein in a biomimetic environment.  相似文献   

3.
Electrochemical methods employing the hanging mercury drop electrode were used to study the interaction between variants of the complement-derived antimicrobial peptide CNY21 (CNYITELRRQH ARASHLGLAR) and dioleoyl phosphatidylcholine (DOPC) monolayers. Capacitance potential and impedance measurements showed that the CNY21 analogues investigated interact with DOPC monolayers coating the mercury drop. Increasing the peptide hydrophobicity by substituting the two histidine residues with leucine resulted in a deeper peptide penetration into the hydrophobic region of the DOPC monolayer, indicated by an increase in the dielectric constant of the lipid monolayer (Deltaepsilon = 2.0 after 15 min interaction). Increasing the peptide net charge from +3 to +5 by replacing the histidines by lysines, on the other hand, arrests the peptide in the lipid head group region. Reduction of electroactive ions (Tl+, Pb2+, Cd2+, and Eu3+) at the monolayer-coated electrode was employed to further characterize the types of defects induced by the peptides. All peptides studied permeabilize the monolayer to Tl+ to an appreciable extent, but this effect is more pronounced for the more hydrophobic peptide (CNY21L), which also allows penetration of larger ions and ions of higher valency. The results for the various ions indicate that charge repulsion rather than ion size is the determining factor for cation penetration through peptide-induced defects in the DOPC monolayer. The effects obtained for monolayers were compared to results obtained with bilayers from liposome leakage and circular dichroism studies for unilamellar DOPC vesicles, and in situ ellipsometry for supported DOPC bilayers. Trends in peptide-induced liposome leakage were similar to peptide effects on electrochemical impedance and permeability of electroactive ions for the monolayer system, demonstrating that formation of transmembrane pores alone does not constitute the mechanism of action for the peptides investigated. Instead, our results point to the importance of local packing defects in the lipid membrane in close proximity to the adsorbed peptide molecules.  相似文献   

4.
The proton pumping activity of bacteriorhodopsin (bR) in the purple membrane adsorbed onto a thin polymer film as a solid support for electrical measurements has been examined in the presence of local anesthetics and 1-alcohols as an anesthetic model. This membrane adsorbed system provided high reproducibility of the photocurrents in bR due to the mechanical and the chemical stability and the electric properties of the thin polymer film. As the concentrations of the local anesthetics increased, the photocurrents generated by the proton pump of bR were cooperatively suppressed and the changes in the photocurrents were reversible. From the dose–response curves for the anesthetics, the concentration (EC50) required for a 50% suppression showed a marked specificity in the order of lidocaine>bupivacaine>tetracaine>dibucaine. The suppression of the photocurrent in bR was more effective for the uncharged form of the local anesthetics than for the charged one. The absorption and fluorescence spectra suggested that the charged form of the anesthetics was bound to the purple membrane surface, while their uncharged form interacted with the hydrophobic portions of the purple membrane interior rather than with the membrane surface. From the dose–response curves for the 1-alcohols, an increase in hydrophobicity in their molecules effectively suppressed the photocurrent of bR. We found that the binding of hydrophobic organic cations such as tetracaine hydrochloride and bupivacaine hydrochloride to the blue membrane with loss of the proton pump, which was prepared by removal of the cations from the purple membrane, could regenerate the proton pumping activity. The photocurrent in bR in the purple membrane adsorbed onto a thin solid film sensitively responded to different local anesthetics.  相似文献   

5.
Stoodley R  Bizzotto D 《The Analyst》2003,128(6):552-561
Characterization of the potential-induced changes of a lipid-coated Hg-0.1 M KCl interface through electrochemical techniques and newly developed in situ fluorescence microscopy is described. Fluorescence of a fluorophore-containing dioleoyl phosphatidylcholine (DOPC) layer deposited from the gas-solution interface was observed to be dependent upon the potential of the Hg surface. The largest changes occurred for potentials where the lipid layer was desorbed: the lipid moved away from the electrode surface, reducing the efficiency of metal-mediated quenching of the excited state resulting in an increase in fluorescence. Electric potential-induced changes in the morphology of the adsorbed or desorbed DOPC lipid monolayer were observed optically for the first time using this technique. The observed potential-dependent fluorescence was compared to previous studies on an octadecanol-coated Au(111) electrode. Fluorescence microscopy was also used to characterize the fusion of DOPC liposomes with a previously adsorbed DOPC layer. Large changes in fluorescence were observed for the DOPC layer after fusion with liposomes. The fusion was accomplished via potential-created defects in the adsorbed DOPC monolayer through which the liposomes interact. The integration of the liposomes into the adsorbed monolayer results in a hybrid layer in which some lipid exists further from the electrode surface, resulting in a large increase in fluorescence. Possibilities for the creation of a biomimetic adsorbed hybrid lipid layer on Hg are also discussed.  相似文献   

6.
pH-responsive amphiphilic polymers with suitable graftings have demonstrated highly efficient cell membrane activity and hence are promising applicants for drug-delivery. Grafting the hydrophobic amino acid l-phenylalanine and the hydrophilic methoxy poly(ethylene glycol) amine onto the pendant carboxylic acid moieties of a linear polyamide, poly(l-lysine isophthalamide), can effectively modify the amphiphilicity and conformation of the amphiphilic polymers. Here, the interactions of these polymers with phospholipid monolayers adsorbed on mercury (Hg) electrodes have been studied. AC voltammetry (ACV), rapid cyclic voltammetry (RCV), and electrochemical impedance spectroscopy (EIS) have been applied to monitor phospholipid monolayer associations with different polymer concentrations under different pH values. The polymers interact reversibly with the monolayer shown by altering the monolayer capacitance and inhibiting the phospholipid reorientation in electric field. Polymer grafting enhances the pH-mediated conformational change of the polymers which in turn increases their phospholipid monolayer activity. The most significant monolayer interactions have been observed with the polymer grafted with hydrophobic l-phenylalanine. A low level of PEGylation of the backbone also increases the monolayer activity. The polymer/DOPC interactions have been represented with an impedance model, which takes account of the interaction giving rise to an increase in monolayer capacitance and inhomogeneity and a Debye type dielectric relaxation. The extent of penetration of the polymers into the monolayer is inversely related to the electrical resistance they give rise to during the Debye relaxation. The cell membrane activities of these amphiphilic polymers have been successfully mirrored in this supported DOPC monolayer system, isolating the key parameters for biomembrane activities and giving insight into the mechanism of the interactions. The conclusions from this study provide strategic directions in material design catering to different requirements in biomedical applications.  相似文献   

7.
The transient photocurrent response from bacteriorhodopsin (bR) on tin oxide electrodes was strongly influenced by metal ions bound to bR molecules. The photocurrent polarity reversal pH, which corresponded to the pH value for the reversal of the proton release/uptake sequence in the bR photocycle, of cation-substituted purple membrane (PM) was shifted to lower pH with the increase in the cation affinities to carboxyl groups and a close correlation was noted between the two values. This suggests that the metal ion present in the extracellular region of a bR molecule modulates the pK(a) of proton release groups of bR by stabilizing the ionized state of the proton-releasing glutamic acids. The behavior of photocurrents at light-off in alkaline media, reflecting the proton uptake by bR, was unchanged by binding monovalent (Na(+) and K(+)) or divalent cations (Mg(2+) and Ca(2+)), but was drastically changed by binding La(3+) ions. This can be explained by invoking a substantial slowing of the proton uptake process in the presence of La(3+).  相似文献   

8.
The thermodynamic ‘total’ charge density is the charge to be supplied to the electrode to keep the applied potential constant when the electrode surface is increased by unity, while the extrathermodynamic ‘free’ charge density is the charge actually experienced by the diffuse layer ions. The total charge density at dioleoylphosphatidylcholine (DOPC) and octadecanethiol (ODT) monolayers and mixed ODT/DOPC bilayers self-assembled on mercury from aqueous solutions was determined from chronocoulometric single potential steps to a final potential negative enough to cause complete desorption of the film. The effect of different alkali metal ions and of tetramethylammonium on DOPC desorption was examined. The total charge for ODT monolayers and ODT/DOPC bilayers, +56±3 μC cm−2, agrees with the value obtained by integration of the current under the reductive desorption voltammetric peaks, only provided the scan rate is higher than 100 mV s−1. An approximate model of the interface of the ODT-coated electrode, which accounts for partial charge transfer from sulfur to mercury and for the degree of dissociation of the sulfhydryl group upon self-assembly, was employed to estimate the free charge density.  相似文献   

9.
The purple membrane (PM) of Halobacterium salinarum contains a single type of protein, bacterio-rhodopsin (bR), which is a member of the seven alpha-helices transmembrane protein family. This protein is a photoactive proton pump, translocating one proton from the cytoplasmic to the extracellular side of the PM per photon absorbed. bR is found in trimers in PM, where they are assembled in a two-dimensional hexagonal lattice. We show herein that stable and functional films can be built in monolayers at the air-water interface by spreading aqueous suspensions of purified and native PM patches. In situ spectroscopic measurements at the air-water interface indicate that bR remains photoactive in this environment. Physical parameters of these PM films, such as protein molecular area, irreversible in-plane aggregation, z-axis orientation, film thickness, and surface roughness, were determined from surface pressure and surface potential-area isotherms, fluorescence spectroscopy, and X-ray reflectivity at the air-water interface. We find that PM do form organized monolayers of membranes, with an optimal packing density at a surface pressure of approximately 20 mN/m, although no preferential vectorial alignment, with respect to the plane normal to the membrane, can be detected from fluorescence quenching experiments.  相似文献   

10.
Au nanoparticles fully coated with omega-ferrocenyl hexanethiolate ligands, with average composition Au225(omega-ferrocenyl hexanethiolate)43, exhibit a unique combination of adsorption properties on Pt electrodes. The adsorbed layer is so robust that electrodes bearing submonolayer, monolayer, and multilayer quantities of these nanoparticles can be transferred to fresh electrolyte solutions and there exhibit stable ferrocene voltammetry over long periods of time. The kinetics of forming the robustly adsorbed layer are slow; monolayer and submonolayer deposition can be described by a rate law that is first order in nanoparticle concentration and in available electrode surface. The adsorption mechanism is proposed to involve entropically enhanced (multiple) ion-pair bridges between oxidized (ferrocenium) sites and certain specifically adsorbed electrolyte anions on the electrode. Adsorption is promoted by scanning to positive potentials (through the ferrocene wave) and by high concentrations of Bu4N+ X- electrolyte (X- = ClO4(-), PF6(-)) in the CH2Cl2 solvent; there is no adsorption if X- = p-toluenesulfonate or if the electrode is coated with an alkanethiolate monolayer. The electrode double layer capacity is not appreciably diminished by the adsorbed ferrocenated nanoparticles, which are gradually desorbed by scanning to potentials more negative than the electrode's potential of zero charge. At very slow scan rates, voltammetric current peaks are symmetrical and nearly reversible, but exhibit E(fwhm) considerably narrower (typically 35 mV) than ideally expected (90.6 mV, at 298 K) for a one-electron transfer or for reactions of multiple, independent redox centers with identical formal potentials. The peak narrowing is qualitatively explicable by a surface-activity effect invoking large, attractive lateral interactions between nanoparticles and, or alternatively, by a model in which ferrocene sites react serially at formal potentials that become successively altered as ion-pair bridges are formed. At faster scan rates, both deltaE(peak) and E(fwhm) increase in a manner consistent with a combination of uncompensated ohmic resistance of the electrolyte solution and of the adsorbed film, as distinct from behavior produced by slow electron transfer.  相似文献   

11.
Abstract— The composition of retinal isomers in bacteriorhodopsin (bR) in purple membrane (PM) was determined by photoelectric response measurements using a sandwich-type electrochemical cell. The measured amplitude of the photocurrent obtained from a dark-adapted sample was 55% lower than that from a light-adapted sample. This ratio, 55:45, would correspond to the 13- cis /aU- trans isomer ratio of retinal in the dark if the 13- cis form of the pigment did not give a response. This amplitude change correlated with the visible spectral shift of bR. The isomer ratio in the dark depended only weakly on the temperature of the electrolyte, whereas the retinal isomerization rate strongly depended on the temperature and the pH of the electrolyte in the cell. Our results indicate that photoelectric response is elicited only by a species originating from bR containing all- trans retinal and that the behavior of the response in the dark is associated with the pKa of the proton release kinetics of Asp-85.  相似文献   

12.
LL-37 is an alpha-helical antimicrobial peptide of human origin. It is a 37 residue cathelicidin peptide. This paper explores the use of electrochemical methods to investigate the interaction of LL-37 with phospholipid and lipid A monolayers on a mercury drop electrode. Experiments were carried out in Dulbecco's phosphate buffered saline at pH approximately 7.6. The capacity-potential curves of the coated electrode in the presence and absence of LL-37 were measured using out-of-phase ac voltammetry. The frequency dependence of the complex impedance of the coated electrode in the presence and absence of LL-37 was estimated at -0.4 V versus Ag/AgCl 3.5 mol dm(-3) KCl. The monolayer permeability to ions was studied by following the reduction of Tl(I) to Tl(Hg) at the coated electrode. LL-37 shows no significant interaction with DOPC. However, LL-37 shows a small interaction with DOPG and lipid A within a DOPC monolayer where the monolayer permeability is marginally increased and the zero frequency capacitance (ZFC) is marginally decreased in both cases. LL-37 shows a significant interaction with a lipid A monolayer thereby decreasing the ZFC by 30%. The results concur with the known membrane active properties of LL-37 and establish this electrochemical approach as a key technique for screening peptides.  相似文献   

13.
The distribution processes of chlorin e6 (CE) and monoaspartyl-chlorin e6 (MACE) between the outer and inner phospholipid monolayers of 1,2-dioleoyl-phosphatidylcholine (DOPC) vesicles were monitored by 1H NMR spectroscopy through analysis of chemical shifts and line widths of the DOPC vesicle resonances. Chlorin adsorption to the outer vesicle monolayer induced changes in the DOPC 1H NMR spectrum. Most pronounced was a split of the N-methyl choline resonance, allowing for separate analysis of inner and outer vesicle layers. Transbilayer distribution of the chlorin compounds was indicated by time-dependent characteristic spectral changes of the DOPC resonances. Kinetic parameters for the flip-flop processes, that is, half-lives and rate constants, were obtained from the experimental data points. In comparison to CE, MACE transbilayer movement was significantly reduced, with MACE remaining more or less attached to the outer membrane layer. The distribution coefficients for CE and MACE between the vesicular and aqueous phase were determined. Both CE and MACE exhibited a high affinity for the vesicular phase. For CE, a positive correlation was found between transfer rate and increasing molar ratio CE/DOPC. Enhanced membrane rigidity induced by increasing amounts of cholesterol into the model membrane was accompanied by a decrease of CE flip-flop rates across the membrane. The present study shows that the movement of porphyrins across membranes can efficiently be investigated by 1H NMR spectroscopy and that small changes in porphyrin structure can have large effects on membrane kinetics.  相似文献   

14.
Electron transport (ETp) across bacteriorhodopsin (bR), a natural proton pump protein, in the solid state (dry) monolayer configuration, was studied as a function of temperature. Transport changes from thermally activated at T > 200 K to temperature independent at <130 K, similar to what we have observed earlier for BSA and apo-azurin. The relatively large activation energy and high temperature stability leads to conditions where bR transports remarkably high current densities above room temperature. Severing the chemical bond between the protein and the retinal polyene only slightly affected the main electron transport via bR. Another thermally activated transport path opens upon retinal oxime production, instead of or in addition to the natural retinal. Transport through either or both of these paths occurs on a background of a general temperature-independent transport. These results lead us to propose a generalized mechanism for ETp across proteins, in which tunneling and hopping coexist and dominate in different temperature regimes.  相似文献   

15.
Conducting polymers can serve as soft electrode substrates for anchoring and orientating functional membrane proteins. We utilize this possibility to orient bacteriorhodopsin (bR), a membrane protein that functions as a light-driven proton pump, on these substrates. The underlying polymer substrate becomes optoelectronically active with the spectral and temporal characteristics corresponding to that of the adjacent bR molecular layer. We demonstrate the concept of passive and active biomolecular signal transduction using model conducting polymers. The photoinduced current modulation in the conducting polymer layer can be explained in terms of the charge displacements within the proximal bR layer or charge-transfer processes across the interface. We explore the implications of this strong coupling between the photophysical processes in bR and electrical processes in the conducting polymer layer.  相似文献   

16.
Flameless atomic absorption spectrometry (flameless a.a.s.) was applied to study the state of mercury deposited on a gold plate electrode from very dilute mercury(II) solution by controlled-potential electrolysis. A stable monolayer is formed on the gold electrode by the electrolysis at a potential about 200 mV more positive than the reversible Nernst potential for the reduction of mercury(II) to mercury(0). After the monolayer formation, bulk mercury is deposited on the monolayer at the reversible potential and an adatom layer is also found. The difference of activation free energies between the evaporation of mercury from the monolayer and that from bulk mercury corresponds to the underpotential shift for the electrodeposition of mercury on the gold electrode.  相似文献   

17.
Abstract —Two strains of archaebacteria have been found to contain light-driven proton pumping pigments analogous to bacteriorhodopsin (bR) in Halobacterium salinarium . These proteins are called archaerhodopsin-1 (aR-1) and archaerhodopsin-2 (aR-2). Their high degree of sequence identity with bR within the putative proton channel enables us to draw some conclusions about the roles of regions where differences in amino acids exist, and in particular the surface residues, on the structure and function of retinal-based proton pumps. We have characterized the spectral and photochemical properties of these two proteins and compared them to the corresponding properties of bR. While there are some differences in absorbance maxima and kinetics of the photocycle, most of the properties of aR-1 and aR-2 are similar to those of bR. The most striking differences of these proteins with bR are the lack of an alkaline-induced red-shifted absorption species and a dramatic (apparent) decrease in the light-induced transient proton release. In membrane sheet suspensions of aR-1 at 0.15 M KCI, the order of proton release and uptake appears opposite that of bR, in which proton release precedes uptake. The nature of this behavior appears to be due to differences in the amino acid sequence at the surfaces of the proteins. In particular, the residue corresponding to the lysine at position 129 of the extracellular loop region of bR is a histidine in aR-1 and could regulate the efficient release of protons into solution in bR.  相似文献   

18.
The membrane properties of the ganglioside GM1 (GM1)/dioleoylphosphatidylcholine (DOPC) binary system and GM1/dipalmitoylphosphatidylcholine (DPPC)/DOPC ternary system were investigated using surface pressure measurements and atomic force microscopy (AFM), and the effect of surface pressure on the properties of the membranes was examined. Mixed GM1/DPPC/DOPC monolayers were deposited on mica using the Langmuir-Blodgett technique for AFM. GM1 and DOPC were immiscible and phase-separated. The AFM image of the GM1/DOPC (1:1) monolayer showed island-like GM1 domains embedded in the DOPC matrix. There was no morphological change on varying surface pressure. The surface pressure-area isotherm of the GM1/DPPC/DOPC (2:9:9) monolayer showed a two-step collapse as in the DPPC/DOPC (1:1) monolayer. The AFM image for the GM1/DPPC/DOPC monolayer showed DPPC and GM1 domains in the DOPC matrix, and the DPPC-rich phase containing GM1 showed a percolation pattern the same as the GM1/DPPC (1:9) monolayer. The percolation pattern in the GM1/DPPC/DOPC monolayer changed as the surface pressure was varied. The surface pressure-responsive change in morphology of GM1 was affected by the surrounding environment, suggesting that the GM1 localized in each organ has a specific role.  相似文献   

19.
Polarograms for decyl mercuric halides in dimethylformamide containing tetraalkylammonium perchlorates exhibit two waves. When large-scale electrolyses of decyl mercuric halides are performed at potentials corresponding to the first polarographic wave, the couldometric n value is unity and didecylmercury is obtained in quantitative yield; electrolyses carried out at potentials on the plateau of the second polarographic wave afford only decane and the n value is essentially 2. Double-potential-step chronocoulometry and staircase voltammetry indicate that, at potentials corresponding to the first polarographic wave, the decyl mercuric halide (which is itself adsorbed onto mercury to the extent of less than a monolayer) undergoes reversible one-electron reduction to adsorbed decyl mercury radicals and to adsorbed decyl mercury radical “polymer”; the adsorbed radicals have a lifetime of approximately 10?3s and disproportionate into didecylmercury and elemental mercury. In the presence of electrolytically released halide ion, the adsorbed radicals are reoxidized to the decyl mercuric halide; alternately, the adsorbed species are reoxidized to decyl mercury cations at a potential approximately 600 mV more positive than that required for reoxidation to the decyl mercuric halide. At potentials corresponding to the second polarographic wave, reduction of decyl mercuric halides is an irreversible process producing decyl carbanions which are protonated by traces of water in the solvent to give decane.  相似文献   

20.
The interaction of amorphous colloidal silica (SiO(2)) nanoparticles of well-defined sizes with a dioleoyl phosphatidylcholine (DOPC) monolayer on a mercury (Hg) film electrode has been investigated. It was shown using electrochemical methods and microcalorimetry that particles interact with the monolayer, and the electrochemical data shows that the extent of interaction is inversely proportional to the particle size. Scanning electron microscopy (SEM) images of the electrode-supported monolayers following exposure to the particles shows that the nanoparticles bind to the DOPC monolayer irrespective of their size, forming a particle monolayer on the DOPC surface. A one-parameter model was developed to describe the electrochemical results where the fitted parameter is an interfacial layer thickness (3.2 nm). The model is based on the adsorptive interactions operating within this interfacial layer that are independent of the solution pH and solution ionic strength. The evidence implies that the most significant forces determining the interactions are van der Waals in character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号