首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amyloid beta-peptide (Abeta) plays a critical role in Alzheimer's disease (AD). The monomeric state of Abeta can self-assemble into oligomers, protofibrils, and amyloid fibrils. Since the fibrils and soluble oligomers are believed to be responsible for AD, the construction of molecules capable of capturing these species could prove valuable as a means of detecting these potentially toxic species and of providing information pertinent for designing drugs effective against AD. To this aim, we have designed short peptides with various hydrophobicities based on the sequence of Abeta14-23, which is a critical region for amyloid fibril formation. The binding of the designed peptides to Abeta and the amplification of the formation of peptide amyloid-like fibrils coassembled with Abeta are elucidated. A fluorescence assay utilizing thioflavin T, known to bind specifically to amyloid fibrils, revealed that two designed peptides (LF and VF, with the leucine and valine residues, respectively, in the hydrophobic core region) could form amyloid-like fibrils effectively by using mature Abeta1-42 fibrils as nuclei. Peptide LF also coassembled with soluble Abeta oligomers into peptide fibrils. Various analyses, including immunostaining with gold nanoparticles, enzyme-linked immunosorbent assays, and size-exclusion chromatography, confirmed that the LF and VF peptides formed amyloid-like fibrils by capturing and incorporating Abeta1-42 aggregates into their peptide fibrils. In this system, small amounts of mature Abeta1-42 fibrils or soluble oligomers could be transformed into peptide fibrils and detected by amplifying the amyloid-like fibrils with the designed peptides.  相似文献   

2.
The aggregation of amyloid beta-peptide [Abeta(1-40)] into fibril is a key pathological process associated with Alzheimer's disease. The effect of cationic gemini surfactant hexamethylene-1,6-bis-(dodecyldimethylammonium bromide) [C(12)H(25)(CH(3))(2)N(CH(2))(6)N(CH(3))(2)C(12)H(25)]Br(2) (designated as C(12)C(6)C(12)Br(2)) and single-chain cationic surfactant dodecyltrimethylammonium bromide (DTAB) on the Alzheimer amyloid beta-peptide Abeta(1-40) aggregation behavior was studied by microcalorimetry, circular dichroism (CD), and atomic force microscopy (AFM) measurements at pH 7.4. Without addition of surfactant, 0.5 g/L Abeta(1-40) mainly exists in dimeric state. It is found that the addition of the monomers of C(12)C(6)C(12)Br(2) and DTAB may cause the rapid aggregation of Abeta(1-40) and the fibrillar structures are observed by CD spectra and the AFM images. Due to the repulsive interaction among the head groups of surfactants and the formation of a small hydrophobic cluster of surfactant molecules, the fibrillar structure is disrupted again as the surfactant monomer concentration is increased, whereas globular species are observed in the presence of micellar solution. Different from single-chain surfactant, C(12)C(6)C(12)Br(2) has a much stronger interaction with Abeta(1-40) to generate larger endothermic energy at much lower surfactant concentration and has much stronger ability to induce the aggregation of Abeta(1-40).  相似文献   

3.
The aggregation of amyloid beta-peptide (Abeta(1-40)) into fibrils is a key pathological process associated with Alzheimer's disease. This work has investigated the micellization process of biosurfactant surfactin and its effect on the aggregation behavior of Abeta(1-40). The results show that surfactin has strong self-assembly ability to form micelles and the micelles tend to form larger aggregates. Surfactin adopts a beta-turn conformation at low micelle concentration but a beta-sheet conformation at high micelle concentration. The effect of surfactin on the Abeta(1-40) aggregation behavior exhibits a strong concentration-dependent fashion. Below the critical micelle concentration of surfactin, the electrostatic binding of surfactin monomers on Abeta(1-40) causes Abeta(1-40) molecules to unfold. Assisted by the hydrophobic interaction among surfactin monomers on the Abeta(1-40) chain, the conformation of Abeta(1-40) transfers to the beta-sheet structure, which promotes the formation of fibrils. At low surfactin micelle concentration, besides the electrostatic force and hydrophobic interaction, hydrogen bonds formed between surfactin micelles and adjacent Abeta(1-40) peptide chains may promote the ordered organization of these Abeta(1-40) peptide chains, thus leading to the formation of beta-sheets and fibrils to a great extent. At high surfactin micelle concentration, the separating of Abeta(1-40) chains by the excessive surfactin micelles and the aggregation of the complexes of Abeta(1-40) with surfactin micelles inhibit the formation of beta-sheets and fibrils.  相似文献   

4.
We report here a CE method for the separation and quantitation of five amyloid peptides (Abeta1-42, 1-40, 1-39, 1-38, and 1-37) considered as potential biomarkers of Alzheimer's disease. These amyloid peptides have very similar structures. Sample preparation and storage conditions are critical parameters to ensure their solubility and to avoid the aggregation process in particular for Abeta1-42. Their solubility was found fully dependent on the NH(4)OH concentration that was employed initially to dissolve the lyophilized amyloid peptides. Conditions to achieve a full separation of these peptides were found using a dynamic coating with 1,4-diaminobutane (DAB). The linear decrease of their electrophoretic mobility highlighted an ion-pairing phenomenon between the peptides and DAB. The optimal background electrolyte was a 40 mM borate buffer, pH 9 containing 3 mM of DAB. Under these conditions, resolutions ranged from 1.3 to 2.4 with theoretical plates reaching 300,000. Under the retained conditions, we showed that adsorption of peptides to silica was negligible (recovery over 94.5%) and depletion effect of the background electrolyte was overcome. The method was finally validated in terms of linearity and repeatability and the limits of detection for the five Abeta peptides were estimated. The inter-day repeatability of the migration times was very satisfactory with RSDs less than 1.55%. The RSDs of the peak areas were below 5%. With this CE-UV method, limits of detection of the peptides ranged from 300 to 500 nM. We finally demonstrated that this method can be applied to real biological samples such as CSF.  相似文献   

5.
The aggregation process of beta-amyloid peptide Abeta into amyloid is strongly associated with the pathology of Alzheimer's disease (AD). Aggregation may involve a transition of an alpha helix in Abeta(1-28) into beta sheets and interactions between residues 18-20 of the "Abeta amyloid core." We applied an i, i+4 cyclic conformational constraint to the Abeta amyloid core and devised side chain-to-side chain lactam-bridged cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28). In contrast to Abeta(1-28) and [Lys(17), Asp(21)]Abeta(1-28), cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) was not able to form beta sheets and cytotoxic amyloid aggregates. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) was able to interact with Abeta(1-28) and to inhibit amyloid formation and cytotoxicity. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) also interacted with Abeta(1-40) and interfered with its amyloidogenesis. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) or similarly constrained Abeta sequences may find therapeutic and diagnostic applications in AD.  相似文献   

6.
The cytotoxicity of Alzheimer's disease has been linked to the self-assembly of the 4042 amino acid of the amyloid-beta (Abeta) peptide into oligomers. To understand the assembly process, it is important to characterize the very first steps of aggregation at an atomic level of detail. Here, we focus on the N-terminal fragment 1-28, known to form fibrils in vitro. Circular dichroism and NMR experiments indicate that the monomer of Abeta(1-28) is alpha-helical in a membranelike environment and random coil in aqueous solution. Using the activation-relaxation technique coupled with the OPEP coarse grained force field, we determine the structures of the monomer and of the dimer of Abeta(1-28). In agreement with experiments, we find that the monomer is predominantly random coil in character, but displays a non-negligible beta-strand probability in the N-terminal region. Dimerization impacts the structure of each chain and leads to an ensemble of intertwined conformations with little beta-strand content in the region Leu17-Ala21. All these structural characteristics are inconsistent with the amyloid fibril structure and indicate that the dimer has to undergo significant rearrangement en route to fibril formation.  相似文献   

7.
Abeta(1-40) and Abeta(1-42) are the main forms of amyloid beta (Abeta) peptides in the brain of Alzheimer's patients; however, the latter possesses much stronger aggregation and deposition propensity than the former, which is partially attributed to the more unfolded C-terminus of Abeta(1-42) than that of Abeta(1-40). To explore the physical basis underlying the different dynamic behaviors of both Abeta peptides, parallel molecular dynamics (MD) simulations on Abeta(1-40) and Abeta(1-42) were performed to investigate their thermal unfolding processes. It is revealed that the addition of residues 41 and 42 in Abeta(1-42) disrupts the C-terminal hydrophobic core, which triggers the unraveling of the C-terminal helix of Abeta(1-42). This conclusion is supported by the MD simulation on the I41A mutant of Abeta(1-42), in which the C-terminal helix possesses relatively higher conformational stability than that of wild type Abeta(1-42) owing to the change in hydrophobic interaction patterns.  相似文献   

8.
The conformation and aggregation behavior of synthetic Alzheimer's amyloid peptides (Abeta) has been investigated using hydrogen-deuterium exchange measured by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Mass spectrometric fragmentation of deuterated Abeta peptides was carried out by collision-induced dissociation, inlet fragmentation, and post-source decay. In contrast to the C-terminally truncated peptides Abeta(1-40) and Abeta(1-36) showing full hydrogen-deuterium exchange, Abeta(1-42) and the pyroglutamyl peptide Pyr(3)-Abeta(3-42) produced more complex signal patterns resulting from the formation of beta-sheet-structured oligomers having 18-20 strongly protected protons. Using mass spectrometric fragmentation the results show that the reduced isotope exchange of Abeta(1-42) can be attributed to the central part of the chain comprising residues 8-23. This confirms involvement of the hydrophobic binding domain LVFFA in the course of Abeta aggregation and demonstrates that hydrogen-deuterium exchange in combination with mass spectrometry is well suited for structural analysis of monomeric and reversibly associated amyloid peptides using picomole quantities of material.  相似文献   

9.
Modulation of the fibrillogenesis of amyloid peptide Abeta(1-40) with the cationic gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (C(12)C(6)C(12)Br(2)) has been studied. Both UV-vis and AFM results show that C(12)C(6)C(12)Br(2) monomers can promote the fibrillogenesis of Abeta(1-40) while its micelles inhibit this process. The electrostatic/hydrophobic force balance plays important roles in determining the Abeta(1-40) aggregation style and the secondary structures. When the surfactant positive charges are close to the Abeta(1-40) negative charges in number, the hydrophobic interaction is highly enhanced in the system. Both the nucleation rate and the lateral association between fibrils are greatly promoted. However, when the surfactant positive charges are in excess of the Abeta(1-40) negative charges, the electrostatic interaction is strengthened. In this case, the lateral association is inhibited and the alpha-helix to beta-sheet transition in the secondary structure is prevented. Simultaneously, another assembly pathway is induced to give the amorphous aggregates. Moreover, the size and surface roughness of the Abeta(1-40) aggregates also vary upon increasing C(12)C(6)C(12)Br(2) concentration.  相似文献   

10.
As the population ages, the need to develop methods to understand and intercept the processes responsible for protein aggregation diseases is becoming more urgent. The aggregation of the protein beta-amyloid (Abeta) has been implicated in Alzheimer's Disease (AD); however, whether the toxic species is a large, insoluble aggregate or some lower order form is not yet known. Agents that can modulate the aggregation state of Abeta could resolve this controversy by facilitating our understanding of the consequences of aggregation and its underlying mechanism. To date, however, ligands that bind to specific forms of Abeta have not been identified. To address this deficiency, we tested whether phage display could yield such ligands by screening libraries against Abeta in two different states: monomeric or highly aggregated. Intriguingly, the peptides selected had different effects on Abeta aggregation. Peptides selected for binding to monomeric Abeta did not perturb aggregation, but those selected using highly aggregated Abeta increase the rate of aggregation drastically. The latter also alter the morphology of the resulting aggregate. The ability of a peptide to promote aggregation correlated with its affinity for the N-terminal 10 residues of Abeta. This result indicates that the mechanism by which the peptides influence aggregation is related to their affinity for the Abeta N-terminus. Thus, the identification of compounds that bind to this Abeta section can afford agents that affect aggregation. Moreover, the data suggest that endogenous ligands that interact with the N-terminal region can influence the propensity of Abeta to form aggregates and the morphology of those that form. Our data highlight the utility of phage display for identifying ligands that bind to target proteins in different states, and they indicate that such agents can be used to perturb protein aggregation.  相似文献   

11.
A clear understanding of the dynamic events of amyloid beta peptide (Abeta) 1-42, such as the folding, self-assembly, and aggregation processes, would be of great significance in Alzheimer's disease (AD) research. However, elucidation of these Abeta1-42 dynamic events is a difficult issue due to uncontrolled polymerization, which also poses a significant obstacle for establishing an experimental system that clarifies the pathological function of Abeta1-42. On the basis of the O-acyl isopeptide method, we herein developed a novel photo-triggered "click peptide" of Abeta1-42, for example, 26-N-Nvoc-26-AIAbeta42, in which the photocleavable 6-nitroveratryloxycarbonyl (Nvoc) group was introduced at the alpha-amino group of Ser26 in 26-O-acyl isoAbeta1-42 (26-AIAbeta42). From the results, (1) the click peptide did not exhibit the self-assembling nature under physiological conditions due to one single modified ester; (2) photoirradiation of the click peptide and subsequent O-N intramolecular acyl migration afforded the intact Abeta1-42 with a quick and one-way conversion reaction (so-called "click"), while the click peptide was stable under nonphotolytic or storage conditions. In addition, it is advantageous that no additional fibril inhibitory auxiliaries were released during conversion to Abeta1-42. This method provides a novel system useful for investigating the dynamic biological functions of Abeta1-42 in AD by inducible activation of Abeta1-42 self-assembly.  相似文献   

12.
In this study, all-atom 50 ns molecular dynamics simulations are performed on the full-length amyloid beta (Abeta) monomers (WT-Abeta(1-40) and WT-Abeta(1-42)) and their oxidized forms (Met35(O)-Abeta(1-40) and Met35(O)-Abeta(1-42)) in aqueous solution. The effects of the oxidation state of Met35 and the presence of dipeptide (Ile41-Ala42) on the secondary structures of the three distinct regions (the central hydrophobic core region 17-21 (LVFFA), the loop 23-28 (DVGSNK), and the second hydrophobic domain 29-35 (GAIIGLM)) of all monomers have been analyzed in detail, and results are compared with the available experimental information. Our simulations indicate that the WT-Abeta(1-40) monomer adopts an overall beta-hairpin-like structure, which is promoted by the turn region (24-27). This turn region is stabilized through salt-bridge formation between the Asp23 and Lys28 residues. In contrast, the overall structure of the oxidized (Met35(O)-Abeta(1-40)) monomer can be divided into three well-defined bend regions separated by coil segments. These structural differences may be critical for the measured decrease in the rate of aggregation of Met35(O)-Abeta(1-40) peptide. In the WT-Abeta(1-42) monomer, in comparison to the WT-Abeta(1-40), the Asp23-Lys28 salt bridge is absent, and consequently, the turn in the middle (24-27) region has a smaller curvature. The observed difference in the aggregation rates of these two peptides may be related to the opening of the turn (24-27) stabilized by the Asp23-Lys28 salt bridge. For WT-Abeta(1-42), in the absence of this salt bridge, the unfolding and aggregation events may be more favorable than for WT-Abeta(1-40).  相似文献   

13.
The beneficial effects of Ginkgo biloba extract in the "treatment" of dementia are attributed to its terpene trilactone (TTL) constituents. The interactions between TTLs and amyloid peptide are believed to be responsible in preventing the aggregation of peptide. These interactions have been investigated using infrared vibrational absorption (VA) and circular dichroism (VCD) spectra. Four TTLs, namely ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and bilobalide (BB) and amyloid Abeta(25-35) peptide, as a model for the full length peptide, are used in this study. GA-monoether and GA-diether have also been synthesized and investigated to help understand the role of individual carbonyl groups in these interactions. The precipitation and solubility issues encountered with the mixture of ginkgolide+Abeta peptide for VA and VCD studies were overcome using binary ethanol-D(2)O solvent mixture. The experimental VA and VCD spectra of GA, GB, GC and BB, GA-monoether and GA-diether have been analyzed using the corresponding spectra predicted with density functional theory. The time-dependent experimental VA and VCD spectra of Abeta(25-35) peptide and the corresponding experimental spectra in the presence of TTLs indicated that the effect of the TTLs in modulating the aggregation of Abeta(25-35) peptide is relatively small. Such small effects might indicate the absence of a specific interaction between the TTLs and Abeta(25-35) peptide as a major force leading to the reduced aggregation of amyloid peptides. It is possible that the therapeutic effect of G. biloba extract does not originate from direct interactions between TTLs and the Abeta(25-35) peptide and is more complex.  相似文献   

14.
Chronic imbalance between production and degradation of the human amyloid-beta peptide (Abeta) is assumed to play an important role in pathogenesis of Alzheimer's disease (AD). Post-translational modifications of Abeta could influence its interactions with specifically cleaving proteases and, therefore, perturb the Abeta homeostasis. The angiotensin-converting enzyme (ACE) was previously shown to degrade non-modified Abeta in vitro and in cells. In the presented work, we investigated the effect of isomerization of Asp-7, a common non-enzymatic age-related modification found in AD-associated Abeta species, on hydrolysis of Abeta by ACE. Two synthetic peptides corresponding to the Abeta region 1-16 with either Asp or isoAsp residues in position 7 were examined as monomeric soluble substrates for the N- as well as for the C-domain of ACE. The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) coupled with the (18)O-labeled internal standard approach has allowed us to show that (i) the N-domain of ACE (N-ACE), but not the C-domain, selectively cleaves the Arg-5-His-6 bond in both peptides, and that (ii) N-ACE hydrolyzes the isoAsp-7 analogue more efficiently than the non-modified one. Our results demonstrate a new endopeptidase activity of N-ACE as well as high preference of the domain to recognize and hydrolyze the isomerized Abeta species that were earlier suggested to promote AD pathogenesis. The results suggest the need for further analysis of biological effects of isomerized Abeta and its interaction with ACE in AD pathogenesis.  相似文献   

15.
The aggregation of soluble, nontoxic amyloid beta (Abeta) peptide to beta-sheet containing fibrils is assumed to be a major step in the development of Alzheimer's disease. Interactions of Abeta with neuronal membranes could play a key role in the pathogenesis of the disease. Herein, we study the adsorption of synthetic Abeta peptide to DPPE and DMPE monolayers (dipalmitoyl- and dimyristoylphosphatidylethanolamine). Both lipids exhibit a condensed monolayer state at 20 degrees C and form a similar lattice. However, at low packing densities (at large area per molecule), the length of the acyl chains determines the phase behavior, therefore DPPE is fully condensed whereas DMPE exhibits a liquid-expanded state with a phase transition at approximately 5-6 mNm(-1). Adsorption of Abeta to DPPE and DMPE monolayers at low surface pressure leads to an increase of the surface pressure to approximately 17 mNm(-1). The same was observed during adsorption of the peptide to a pure air-water interface. Grazing incidence X-ray diffraction (GIXD) experiments show no influence of Abeta on the lipid structure. The adsorption kinetics of Abeta to a DMPE monolayer followed by IRRAS (infrared reflection absorption spectroscopy) reveals the phase transition of DMPE molecules from liquid-expanded to condensed states at the same surface pressure as for DMPE on pure water. These facts indicate no specific interactions of the peptide with either lipid. In addition, no adsorption or penetration of the peptide into the lipid monolayers was observed at surface pressures above 30 mNm(-1). IRRAS allows the measurement of the conformation and orientation of the peptide adsorbed to the air-water interface and to a lipid monolayer. In both cases, with lipids at surface pressures below 20 mNm(-1) and at the air-water interface, adsorbed Abeta has a beta-sheet conformation and these beta-sheets are oriented parallel to the interface.  相似文献   

16.
Amyloid fibrils mainly consist of 40-mer and 42-mer peptides (Abeta40, Abeta42). Abeta42 is believed to play a crucial role in the pathogenesis of Alzheimer's disease because its aggregative ability and neurotoxicity are considerably greater than those of Abeta40. The neurotoxicity of Abeta peptides involving the generation of free radicals is closely related to the S-oxidized radical cation of Met-35. However, the cation's origin and mechanism of stabilization remain unclear. Recently, structural models of fibrillar Abeta42 and Abeta40 based on systematic proline replacement have been proposed by our group [Morimoto, A.; et al. J. Biol. Chem. 2004, 279, 52781] and Wetzel's group [Williams, A. D.; et al. J. Mol. Biol. 2004, 335, 833], respectively. A major difference between these models is that our model of Abeta42 has a C-terminal beta-sheet region. Our biophysical study on Abeta42 using electron spin resonance (ESR) suggests that the S-oxidized radical cation of Met-35 could be generated by the reduction of the tyrosyl radical at Tyr-10 through a turn structure at positions 22 and 23, and stabilized by a C-terminal carboxylate anion through an intramolecular beta-sheet at positions 35-37 and 40-42 to form a C-terminal core that would lead to aggregation. A time-course analysis of the generation of radicals using ESR suggests that stabilization of the radicals by aggregation might be a main reason for the long-lasting oxidative stress of Abeta42. In contrast, the S-oxidized radical cation of Abeta40 is too short-lived to induce potent neurotoxicity because no such stabilization of radicals occurs in Abeta40.  相似文献   

17.
The amyloid beta-protein (Abeta) is a seminal neuropathic agent in Alzheimer's disease (AD). Recent evidence points to soluble Abeta oligomers as the probable neurotoxic species. Among the naturally occurring Abeta peptides, the 42-residue form Abeta42 is linked particularly strongly with AD, even though it is produced at approximately 10% of the levels of the more abundant 40-residue form Abeta40. Here, we apply mass spectrometry and ion mobility to the study of Abeta42 and its Pro19 alloform. The Phe19 --> Pro19 substitution blocks fibril formation by [Pro19]Abeta42. Evidence indicates that solution-like structures of Abeta monomers are electrosprayed and characterized. Unfiltered solutions of Abeta42 produce only monomers and large oligomers, whereas [Pro19]Abeta42 solutions produce abundant monomers, dimers, trimers, and tetramers but no large oligomers. When passed through a 10,000 amu filter and immediately sampled, Abeta42 solutions produce monomers, dimers, tetramers, hexamers, and an aggregate of two hexamers that may be the first step in protofibril formation. These results are consistent with recently published photochemical cross-linking data and lend support to recent aggregation mechanisms proposed by Bitan, Teplow, and co-workers [J. Biol. Chem. 2003, 278, 34882-34889].  相似文献   

18.
The conformational change of the 39-43 residues of the amyloid beta-peptide (Abeta) toward a beta-sheet enriched state promotes self-aggregation of the peptide molecules and constitutes the major peptide component of the amyloid plaques in Alzheimer patients. The crucial question behind the self-aggregation of Abeta is related to the different pathways the peptide may take after cleavage from the amyloid precursor proteins at cellular membranes. This work is aiming at determining the conformation of the Abeta (1-40) adsorbed on hydrophobic Teflon and hydrophilic silica particles, as model sorbent surfaces mimicking the apolar transmembrane environment and the polar, charged membrane surface, respectively. The mechanism by which the Abeta interacts with solid surfaces strongly depends on the hydrophobic/hydrophilic character of the particles. Hydrophobic and electrostatic interactions contribute differently in each case, causing a completely different conformational change of the adsorbed molecules on the two surfaces. When hydrophobic interactions between the peptide and the sorbent prevail, the adsorbed Abeta (1-40) mainly adopts an alpha-helix conformation due to H-bonding in the apolar part of the peptide that is oriented towards the surface. On the other hand, when the peptide adsorbs by electrostatic interactions beta-sheet formation is promoted due to intermolecular association between the apolar parts of the adsorbed peptide. Irrespective of the characteristics of the solid sorbent, crowding the surface results in intermolecular association between adsorbed molecules leading to a strong aggregation tendency of the Abeta (1-40). [Diagram: see text] CD spectra of Abeta (1-40) at pH 7: A) in solution ([Abeta]=0.2 mg.ml(-1)) freshly prepared (line) and after overnight incubation (symbols);B) on Teflon (Gamma=0.5 mg.m(-2)).  相似文献   

19.
We have prepared two peptides based on the hydrophobic core (Lys-Leu-Val-Phe-Phe) of amyloid beta-protein (Abeta) that contain alpha,alpha-disubstituted amino acids at alternating positions, but differ in the positioning of the oligolysine chain (AMY-1, C-terminus; AMY-2, N-terminus). We have studied the effects of AMY-1 and AMY-2 on the aggregation of Abeta and find that, at stoichiometric concentrations, both peptides completely stop Abeta fibril growth. Equimolar mixtures of AMY-1 and Abeta form only globular aggregates as imaged by scanning force microscopy and transmission electron microscopy. These samples show no signs of protofibrillar or fibrillar material even after prolonged periods of time (4.5 months). Also, 10 mol % of AMY-1 prevents Abeta self-assembly for long periods of time; aged samples (4.5 months) show only a few protofibrillar or fibrillar aggregates. Circular dichroism spectroscopy of equimolar mixtures of AMY-1 and Abeta show that the secondary structure of the mixture changes over time and progresses to a predominantly beta-sheet structure, which is consistent with the design of these inhibitors preferring a sheet-like conformation. Changing the position of the charged tail on the peptide, AMY-2 interacts with Abeta differently in that equimolar mixtures form large ( approximately 1 mum) globular aggregates which do not progress to fibrils, but precipitate out of solution. The differences in the aggregation mediated by the two peptides is discussed in terms of a model where the inhibitors act as cosurfactants that interfere with the native ability of Abeta to self-assemble by disrupting hydrophobic interactions either at the C-terminus or N-terminus of Abeta.  相似文献   

20.
The role of zinc, an essential element for normal brain function, in the pathology of Alzheimer's disease (AD) is poorly understood. On one hand, physiological and genetic evidence from transgenic mouse models supports its pathogenic role in promoting the deposition of the amyloid beta-protein (Abeta) in senile plaques. On the other hand, levels of extracellular ("free") zinc in the brain, as inferred by the levels of zinc in cerebrospinal fluid, were found to be too low for inducing Abeta aggregation. Remarkably, the release of transient high local concentrations of zinc during rapid synaptic events was reported. The role of such free zinc pulses in promoting Abeta aggregation has never been established. Using a range of time-resolved structural and spectroscopic techniques, we found that zinc, when introduced in millisecond pulses of micromolar concentrations, immediately interacts with Abeta 1-40 and promotes its aggregation. These interactions specifically stabilize non-fibrillar pathogenic related aggregate forms and prevent the formation of Abeta fibrils (more benign species) presumably by interfering with the self-assembly process of Abeta. These in vitro results strongly suggest a significant role for zinc pulses in Abeta pathology. We further propose that by interfering with Abeta self-assembly, which leads to insoluble, non-pathological fibrillar forms, zinc stabilizes transient, harmful amyloid forms. This report argues that zinc represents a class of molecular pathogens that effectively perturb the self-assembly of benign Abeta fibrils, and stabilize harmful non-fibrillar forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号