首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study kinetic one- and two-dimensional Ising models whose transition probabilities occur according to two (or more) locally competing temperatures. The model is solved analytically and studied numerically on different assumptions to reveal a variety of stationary nonequilibrium states and phase transitions; we also investigate the system relaxation in some typical cases.  相似文献   

2.
A two-dimensional atomistic realization of Schlögl’s second model for autocatalysis is implemented and studied on a square lattice as a prototypical nonequilibrium model with first-order transition. The model has no explicit symmetry and its phase transition can be viewed as the nonequilibrium counterpart of liquid-vapor phase separations. We show some familiar concepts from study of equilibrium systems need to be modified. Most importantly, phase coexistence can be a generic feature of the model, occurring over a finite region of the parameter space. The first-order transition becomes continuous as a temperature-like variable increases. The associated critical behavior is studied through Monte Carlo simulations and shown to be in the two-dimensional Ising universality class. However, some common expectations regarding finite-size corrections and fractal properties of geometric clusters for equilibrium systems seems to be inapplicable.  相似文献   

3.
We study a two-dimensional ferrofluid of hard-core particles with internal degrees of freedom (plane rotators) and O(2)-invariant ferromagnetic spin interaction. By reducing the continuous system to an approximating reference lattice system, a lower bound for the two-spin correlation function is obtained. This bound, together with the Fröhlich–Spencer result about the Berezinskii–Kosterlitz–Thouless transition in the two-dimension lattice system of plane rotators, shows that our model also exhibits the same kind of ordering. Namely for a short-range ferromagnetic interaction the two-spin correlation function does not decay faster than some power of the inverse distance between particles, for small temperatures and high densities of the ferrofluid. For a long-range ferromagnetic interaction the model manifests a non-zero order parameter (magnetization) in this domain, whereas for high temperatures spin correlations decay exponentially.  相似文献   

4.
P. Huai  K. Nasu 《Phase Transitions》2013,86(7-8):649-658
A possible difference between the photoinduced phase and the thermally excited one is studied by using a two-dimensional extended Peierls-Hubbard model, which includes a strong electron-phonon coupling and a on-site interelectron repulsion, as well as an anharmonic lattice potential. Because of this anharmonicity, the system undergoes a first order phase transition from an insulating CDW state to a metallic one at a high temperature. Although some sign of an SDW order is expected to appear due to this repulsion, it is always hidden in any equilibrium phase of the present system. In fact, it is hidden, not only in the CDW ground state, but also in this metallic one, since the high temperature itself destroys the SDW order, far before the CDW-metal transition occurs, while a photo-excitation at low enough temperature is shown to generate a local metastable SDW domain. Therefore, to observe the presence of such Coulomb interaction and the resultant broken symmetry, a nonequilibrium photoinduced phase is shown to be most straightforward. Thus, the photoinduce phase transition can make an interaction appear as a broken symmetry only in this phase, even though this interaction is almost completely hidden in all the equilibrium phases from low temperature to high ones.  相似文献   

5.
We present a novel mechanism for thermalizing a system of particles in equilibrium and nonequilibrium situations, based on specifically modeling energy transfer at the boundaries via a microscopic collision process. We apply our method to the periodic Lorentz gas, where a point particle moves diffusively through an ensemble of hard disks arranged on a triangular lattice. First, collision rules are defined for this system in thermal equilibrium. They determine the velocity of the moving particle such that the system is deterministic, time-reversible, and microcanonical. These collision rules can systematically be adapted to the case where one associates arbitrarily many degrees of freedom to the disk, which here acts as a boundary. Subsequently, the system is investigated in nonequilibrium situations by applying an external field. We show that in the limit where the disk is endowed by infinitely many degrees of freedom it acts as a thermal reservoir yielding a well-defined nonequilibrium steady state. The characteristic properties of this state, as obtained from computer simulations, are finally compared to those of the so-called Gaussian thermostated driven Lorentz gas.  相似文献   

6.
We study the nonequilibrium phase transition in a model of aggregation of masses allowing for diffusion, aggregation on contact, and fragmentation. The model undergoes a dynamical phase transition in all dimensions. The steady-state mass distribution decays exponentially for large mass in one phase. In the other phase, the mass distribution decays as a power law accompanied, in addition, by the formation of an infinite aggregate. The model is solved exactly within a mean-field approximation which keeps track of the distribution of masses. In one dimension, by mapping to an equivalent lattice gas model, exact steady states are obtained in two extreme limits of the parameter space. Critical exponents and the phase diagram are obtained numerically in one dimension. We also study the time-dependent fluctuations in an equivalent interface model in (1+1) dimension and compute the roughness exponent and the dynamical exponent z analytically in some limits and numerically otherwise. Two new fixed points of interface fluctuations in (1+1) dimension are identified. We also generalize our model to include arbitrary fragmentation kernels and solve the steady states exactly for some special choices of these kernels via mappings to other solvable models of statistical mechanics.  相似文献   

7.
We investigate by molecular dynamics simulation a system of N particles moving on the surface of a two-dimensional sphere and interacting by a Lennard-Jones potential. We detail the way to account for the changes brought by a nonzero curvature, both at a methodological and at a physical level. When compared to a two-dimensional Lennard-Jones liquid on the Euclidean plane, where a phase transition to an ordered hexagonal phase takes place, we find that the presence of excess defects imposed by the topology of the sphere frustrates the hexagonal order. We observe at high density a rapid increase of the relaxation time when the temperature is decreased, whereas in the same range of temperature the pair correlation function of the system evolves only moderately.  相似文献   

8.
By suitably combining the uniformly driven lattice gas and the two-temperature kinetic Ising model, we obtain a generalized model that allows us to probe a variety of nonequilibrium phase transitions, including a type not previously observed. This new type of transition involves longitudinally ordered steady states, which are phase-segragated states with interface normalsparallel to the drive. Using computer simulations on a two-dimensional lattice gas, we map out the structure of the phase diagram, and the nature of the transitions, in the three-dimensional space of the drive and the two temperatures. While recovering anticipated results in most cases, we find one surprise, namely, that the transition from disorder to longitudinal order is continuous. Unless it turns out to be very weakly first order, this result is inconsistent with the expectation of field-theoretic renormalization group calculations.  相似文献   

9.
We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.  相似文献   

10.
An interacting Ising spin system on a lattice with the competing influence of spin-flip (Glauber) and spin-exchange (Kawasaki) dynamics is studied. The exact nonequilibrium steady-state solution of the pair correlation function in one dimension is derived and compared with the simulation data. The two-dimensional solution, under some Ansatz, is also discussed.  相似文献   

11.
Density functional theory (DFT) of freezing has been used to investigate the freezing transitions in a system of colloidal particles confined to a two-dimensional plane. The particles interact via a model Hertzian type potential of varying softness. The pair-correlation functions (PCFs) needed as input structural information in DFT are calculated by solving hypernetted chain (HNC) integral equation theory. The PCFs thus obtained have been compared with those obtained through experiment and simulations and are found to be in good qualitative agreement. We found that the PCFs are sensitive to the softness of the potential: showing splitting of pair-correlation peak in the harder case and anomalous non-monotonic density dependence in the softer case. Using the common tangent construction method, we have also proposed the fluid-triangular solid phase diagrams in the temperature-density plane. We found that the phase diagram exhibit solid-fluid coexistence region whose thickness decreases with the increasing temperature as well as with increasing softness of the potential. In the temperature and density range of our calculation, DFT fails to produce any reentrance in the phase diagram.  相似文献   

12.
We investigate theoretically and via computer simulation the stationary nonequilibrium states of a stochastic lattice gas under the influence of a uniform external fieldE. The effect of the field is to bias jumps in the field direction and thus produce a current carrying steady state. Simulations on a periodic 30 × 30 square lattice with attractive nearest-neighbor interactions suggest a nonequilibrium phase transition from a disordered phase to an ordered one, similar to the para-to-ferromagnetic transition in equilibriumE=0. At low temperatures and largeE the system segregates into two phases with an interface oriented parallel to the field. The critical temperature is larger than the equilibrium Onsager value atE=0 and increases with the field. For repulsive interactions the usual equilibrium phase transition (ordering on sublattices) is suppressed. We report on conductivity, bulk diffusivity, structure function, etc. in the steady state over a wide range of temperature and electric field. We also present rigorous proofs of the Kubo formula for bulk diffusivity and electrical conductivity and show the positivity of the entropy production for a general class of stochastic lattice gases in a uniform electric field.Supported in part by National Science Foundation Grant DMR81-14726 and NATO Grant 040.82.Work supported in part by a Lafayette College Junior Faculty Leave Grant.Work supported in part by a Heisenberg fellowship of the Deutsche Forschungsgemeinschaft.  相似文献   

13.
The gain spectra of the electron-hole plasma recombination in CdS are investigated as a function of the excitation conditions and of the lattice temperature. From a lineshape analysis which includes such many-body effects as collision broadening, single-particle energy renormalization and excitonic enhancement, average plasma parameters are obtained. In contrast to the predictions of quasi-equilibrium theory, one finds that the electron-hole plasma does not reach a full thermal quasi-equilibrium in direct-gap materials because of the short lifetimes of the carriers. The nonequilibrium effects are shown to lead to the formation of electron-hole plasma density fluctuations. No well-defined coexistence region exists. The experimental results in the phase transition region can consistently be explained by theoretical treatments of this nonequilibrium phase transition.  相似文献   

14.
We introduce a lattice gas model with particles carrying a charge either +1 or –1 and drifting in opposite directions due to the presence of an external field. Our numerical simulations show the formation of polarized clusters elongated along the direction of the field. At low enough temperatures the clusters percolate through the system in a similar way as in the strip phase of the driven lattice gas model. A possible application of the model can be found in microemulsions.  相似文献   

15.
We consider a gas of Newtonian self-gravitating particles in two-dimensional space, finding a phase transition, with a high temperature homogeneous phase and a low temperature clumped one. We argue that the system is described in terms of a gas with fractal behaviour.  相似文献   

16.
Electrons in a two-dimensional semiconducting heterostructure interact with nuclear spins via the hyperfine interaction. Using a a Kondo lattice formulation of the electron-nuclear-spin interaction, we show that the nuclear-spin system within an interacting two-dimensional electron gas undergoes a ferromagnetic phase transition at finite temperatures. We find that electron-electron interactions and non-Fermi liquid behavior substantially enhance the nuclear-spin Curie temperature into the mK range with decreasing electron density.  相似文献   

17.
The type of a phase transition in the quasi-equilibrium system of exciton polaritons in a two-dimensional optical microcavity has been analyzed. It has been shown that, although the system contains two types of bosons undergoing mutual transformations into each other, only one phase transition to the superfluid state with the quasilong-range order occurs in the two-dimensional system. This phase transition is a Kosterlitz-Thouless phase transition. A new physical implementation—excitons in a photon crystal—has been proposed for the Bose condensation of exciton polaritons. The superfluid properties of the ordered phase are discussed, and the superfluid density and Kosterlitz-Thouless transition temperature have been calculated in the low-density approximation.  相似文献   

18.
A relation between a class of stationary points of the energy landscape of continuous spin models on a lattice and the configurations of an Ising model defined on the same lattice suggests an approximate expression for the microcanonical density of states. Based on this approximation we conjecture that if a O(n) model with ferromagnetic interactions on a lattice has a phase transition, its critical energy density is equal to that of the n=1 case, i.e., an Ising system with the same interactions. The conjecture holds true in the case of long-range interactions. For nearest-neighbor interactions, numerical results are consistent with the conjecture for n=2 and n=3 in three dimensions. For n=2 in two dimensions (XY model) the conjecture yields a prediction for the critical energy of the Bere?inskij-Kosterlitz-Thouless transition, which would be equal to that of the two-dimensional Ising model. We discuss available numerical data in this respect.  相似文献   

19.
We predict a nonequilibrium critical phenomenon in the space-time density evolution of a fermionic gas above the temperature of transition into the superfluid phase. On the BCS side of the Bose-Einstein condensation-BCS crossover, the evolution of a localized density disturbance exhibits a negative echo at the point of the initial inhomogeneity. Approaching the Bose-Einstein condensation side, this effect competes with the slow spreading of the density of bosonic molecules. However, even here the echo dominates for large enough times. This effect may be used as an experimental tool to locate the position of the transition.  相似文献   

20.
A modified Gruhn–Hess pair potential model, where the potential parameters related to the elastic constants are different from the original model, was investigated with the aid of Monte Carlo (MC) simulation and Mean Field (MF) theory based upon a two-dimensional nematic lattice model. The model produces a ground state in perfect nematic order, where particles are aligned in the lattice plane. Both the MF predictions and the simulation results for the second-rank ordering tensor show that the system is biaxial in the low-temperature region, with a positive primary order parameter and the main director aligned along the lattice axis. A transition to uniaxial order takes place at higher temperatures with a negative primary order parameter and the director is orthogonal to the lattice plane. This orientational order survives up to temperatures higher than the transition temperature of the three-dimensional lattice model, possibly at all finite temperatures. MF predictions agree qualitatively with simulation but, in quantitative terms, the transition temperature is overestimated by 52%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号