首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The coverage dependence of oxygen adsorption energies on the fcc(111) surfaces of seven different transition metals (Rh, Ir, Pd, Pt, Cu, Au, and Ag) is demonstrated through density functional theory calculations on 20 configurations ranging from one to five adsorption sites and coverages up to 1 ML. Atom projected densities of states are used to demonstrate that the d-band mediated adsorption mechanism is responsible for the coverage dependence of the adsorption energies. This common bonding mechanism results in a linear correlation that relates the adsorption energies of each adsorbate configuration across different metal surfaces to each other. The slope of this correlation is shown to be related to the characteristics of the valence d-orbitals and band structure of the surface metal atoms. Additionally, it is shown that geometric similarity of the configurations is essential to observe the configurational correlations.  相似文献   

2.
The kinetics of the adsorption of metal ions onto a thiolated surface and the selective and quantitative sensing of metal ions were explored using surface plasmon resonance (SPR) spectroscopy. The target metal ion was an aqueous solution of Pt2+ and a thin-gold-film-coated glass substrate was modified with 1,6-hexanedithiol (HDT) as a selective sensing layer. SPR spectroscopy was used to examine the kinetics of metal ion adsorption by means of the change in SPR angle. The selectivity of the thiolated surface for Pt2+ over other divalent metal ions such as Cu2+, Ni2+, and Cd2+ was evident by the time-resolved SPR measurement. SPR angle shift, deltatheta(SPR), was found to increase logarithmically with increasing concentration of Pt2+ in the range of 1.0 x 10(-5)-1.0 mM. The rate of Pt2+ adsorption on HDT observed at both 0.1 and 1 mM Pt2+ accelerates until the surface coverage reaches approximately 17%, after which the adsorption profile follows Langmuirian behavior with the surface coverage. The experimental data indicated that heavy metal ions were adsorbed to the hydrophobic thiolated surface by a cooperative mechanism. A mixed self-assembled monolayer (SAM) composed of HDT and 11-mercaptoundecanoic acid was used to reduce the hydrophobicity of the thiol-functionalized surface. The addition of hydrophilic groups to the surface enhanced the rate of adsorption of Pt2+ onto the surface. The findings show that the adsorption of metal ions is strongly dependent upon the hydrophilicity/hydrophobicity of the surface and that the technique represents an easy method for analyzing the adsorption of metal ions to a functionalized surface by combining SPR spectroscopy with a SAM modification.  相似文献   

3.
The Ono-Kondo lattice density functional theory is used to analyze adsorbate-adsorbate interactions for supercritical systems. In prior work, this approach has been used to study intermolecular interactions in subcritical adsorbed phases, and this has included the study of adsorbate-adsorbate repulsions in the regime of adsorption compression. In this paper, we present the general pattern of adsorption isotherms in Ono-Kondo coordinates; this has not been done in the past. For this purpose, experimental isotherms for adsorption of supercritical fluids (including nitrogen, methane, and carbon dioxide) are plotted in Ono-Kondo coordinates. In addition, we performed Grand Canonical Monte Carlo simulations of adsorption for Lennard-Jones molecules and plotted isotherms in Ono-Kondo coordinates. Our results indicate a pattern of isotherms with regimes of adsorbate-adsorbate attractions at low surface coverage and adsorbate-adsorbate repulsions at high surface coverage. When the generalized Ono-Kondo model is used over a wide range of pressures - from low pressures of the Henry's law regime to supercritical pressures - the slope of the isotherm varies from positive at low pressures to negative at high pressures. The linear sections of these graphs show when the adsorbate-adsorbate interaction energies are approximately constant. When these linear sections have negative slopes, it indicates that the system is in a state of adsorption compression.  相似文献   

4.
Three triple-layer model (TLM) surface complexation models that allow for the formation of multinuclear surface complexes or precipitates are compared, based on their ability to simulate cobalt sorption on α-Al2O3. These models include: (1) a surface solid solution model, (2) a surface polymer model, and (3) a surface continuum model. The solid solution model accounts for high coverage data by invoking a coprecipitation surface reaction, while the polymer model accomplishes the same task with multinuclear surface complexation reactions. In the continuum model, two polymer reactions and one precipitation reaction are proposed. Modeling results indicate that all of the models work reasonably well at predicting sorption data from moderate to high surface coverage (0.1 to 100%). Because the continuum model is the only one presented which is consistent with spectroscopic data throughout the range of surface coverages examined, this model is suggested as the preferred one for modeling metal ion sorption data. Model predictions of pH-edge and isotherm data are discussed and used in the assessment of the merits of the three TLM models.  相似文献   

5.
The volumetric hydrogen adsorption isotherms of two isostructural dehydrated cubic metal nitroprussides M[Fe(CN)5NO] (M = Co2+, Ni2+) have been measured up to a pressure of 760 Torr at 77 and 87 K. These materials are among the most efficient H2 sorbents based on porous coordination polymers reported to date. The H2 uptake in both materials is approximately 1.6 wt % at 77 K and 760 torr. These H2 capacities match those reported recently in the structurally related M3[Co(CN)6]2 compounds and are approximately 25% higher than those reported for Zn4O(1,4-benzenedicarboxylate)3 under the same conditions of temperature and pressure. The isosteric heats of H2 adsorption calculated from the 77 and 87 K isotherms for both materials were found to vary from approximately 7.5 kJ/mol at 0.40 wt % coverage to approximately 5.5 kJ/mol at 1.2 wt % coverage. The N2 BET surface areas were determined to be 634 m2/g and 523 m2/g for M = Ni and M = Co, respectively.  相似文献   

6.
The pulsed field gradient nuclear magnetic resonance method has been employed to probe self-diffusion of organic guest molecules adsorbed in porous silicon with a 3.6 nm pore size. The molecular self-diffusion coefficient and intrapore adsorption were simultaneously measured as a function of the external vapor pressure. The latter was varied in a broad range to provide pore loading from less than monolayer surface coverage to full pore saturation. The measured diffusivities are found to be well-correlated with the adsorption isotherms. At low molecular concentrations in the pores, corresponding to surface coverages of less than one monolayer, the self-diffusion coefficient strongly increases with increasing concentration. This observation is attributed to the occurrence of activated diffusion on a heterogeneous surface. Additional experiments in a broad temperature range and using binary mixtures confirm this hypothesis.  相似文献   

7.
巯基树脂对重金属离子的吸附性能   总被引:16,自引:1,他引:16  
研究了自合成的巯基树脂对重金属离子Pb^2 、Cu^2 、Cd^2 .Ni^2 、Co^2 的吸附容量、吸附动力学、等温吸附过程等静态吸附性能,同时研究了影响吸附的因素和吸附机理.结果表明,该树脂对软酸型重金属离子吸附容量高.pH=5.0-5.7,低温有利于吸附,树脂对各重金属离子等温吸附在实验浓度范围内均符合Langmuir和Freundnch方程.吸附机理研究表明,巯基与重金属离子发生了离子交换和配位反应,化学吸附起支配作用。  相似文献   

8.
通过测定不同覆盖度下的甲苯-正己烷、苯-正己烷、丙酮-正已烷和正戊烷-正己烷4个二组分气体在灯黑上的组成吸附等温线,发现它们有着共同的规律:随着覆盖度的增加,各体系的组成吸附等温线都向上靠近它们各自的气液平衡曲线。因此,基本上可以把二组分的气相与吸附相的平衡看成二组分的气液平衡,4个体系的组成吸附等温线基本上都可以通过理想溶液的相对挥发度方程式模拟得到。  相似文献   

9.
Hydrogen adsorption on functionalized nanoporous activated carbons   总被引:2,自引:0,他引:2  
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.  相似文献   

10.
在25,60和100°C下分别测定了甲醇及二甲醚在SAPO-34分子筛上的吸附等温线,同时用微量热法测定了微分吸附热与覆盖率的关系曲线(量热线),提出了吸附数据需要利用双吸附位Langmuir方程拟合,并获取了相应的吸附参数.对比测得的吸附等温线与量热线发现,在一定压力下,当甲醇及二甲醚在SAPO-34上达到一定吸附量后,随着吸附质分压增加,量热线快速下降,而吸附等温线显示出吸附量仍然继续增加.由此推断,在SAPO-34分子筛上存在两种吸附位——常规吸附位及弱吸附位,其中弱吸附位在高分压下继续吸附.如缺乏量热数据提供的常规吸附位饱和吸附量数据,对吸附等温线进行单吸附位拟合获取吸附参数极易导致错误结果,尤其是当吸附质分压较高时.建议采用双吸附位Langmuir方程,参照量热线提供的常规吸附位的饱和吸附量,通过拟合可以获得两种吸附位的吸附参数.  相似文献   

11.
The adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide (delta-MnO2) has been studied using two methods, viz., isotherms at constant pH in the presence of buffer solution and pH variation in the absence of buffer solution from a fixed metal ion concentration. While the adsorption isotherm experiments were carried out in 0.5 M NaCl only, pH variation or batch titration experiments were carried out in 0.5 M NaCl, 0.01 M NaCl, and 0.01 M KNO3 solutions. The complex nature of adsorption isotherms at constant pH values indicates that adsorption of all the cations is non-Langmuirian (Freundlich) and takes place on the highly heterogeneous oxide surface with different binding energies. The proton stoichiometry derived from isotherms at two close pH values varies between 0.3 and 0.8. The variation of fractional adsorption with pH indicates that the background electrolyte solution influences the adsorption of cations through either metal-like or ligand-like complexes with Cl-, the former showing a low adsorption tendency. The proton stoichiometry values derived from the Kurbatov-type plot varies not only with the electrolyte solution but also with the adsorbate/adsorbent ratio. The variation of fractional adsorption with pH can be modeled either with the formation of the SOM+ type or with a combination of SOM+ and SOMOH type complexes, depending upon the cation and electrolyte medium. The equilibrium constants obtained from Kurbatov-type plots are found to be most suitable in these model calculations. Adsorption calculated on the basis of ternary surface metal-chlorocomplex formation exhibits very low values.  相似文献   

12.
The coalescence stability of poly(dimethylsiloxane) emulsion droplets in the presence of silica nanoparticles ( approximately 50 nm) of varying contact angles has been investigated. Nanoparticle adsorption isotherms were determined by depletion from solution. The coalescence kinetics (determined under coagulation conditions at high salt concentration) and the physical structure of coalesced droplets were determined from optical microscopy. Fully hydrated silica nanoparticles adsorb with low affinity, reaching a maximum surface coverage that corresponds to a close packed monolayer, based on the effective particle radius and controlled by the salt concentration. Adsorbed layers of hydrophilic nanoparticles introduce a barrier to coalescence of approximately 1 kT, only slightly reduce the coalescence kinetics, and form kinetically unstable networks at high salt concentrations. Chemically hydrophobized silica nanoparticles, over a wide range of contact angles (25 to >90 degrees ), adsorb at the droplet interface with high affinity and to coverages equivalent to close-packed multilayers. Adsorption isotherms are independent of the contact angle, suggesting that hydrophobic attraction overcomes electrostatic repulsion in all cases. The highly structured and rigid adsorbed layers significantly reduce coalescence kinetics: at or above monolayer surface coverage, stable flocculated networks of droplets form and, regardless of their wettability, particles are not detached from the interface during coalescence. At sub-monolayer nanoparticle coverages, limited coalescence is observed and interfacial saturation restricts the droplet size increase. When the nanoparticle interfacial coverage is >0.7 and <1.0, mesophase-like microstructures have been noted, the physical form and stability of which depends on the contact angle. Adsorbed nanoparticle layers at monolayer coverage and composed of a mixture of nanoparticles with different hydrophobisation levels form stable networks of droplets, whereas mixtures of hydrophobized and hydrophilic nanoparticles do not effectively stabilize emulsion droplets.  相似文献   

13.
We have re-examined the problem of the interaction of melanins with metal ions. Metal ions are normal constituents of the pigment, but in some cases they can be related to pathologies, mainly at the level of the skin (Cu2+ and Fe3+) and of the central nervous system (Fe2+ and Mn2+). Our approach has been based on the mechanisms of adsorption on the particle surface, by the use of theoretical adsorption isotherms and kinetic models. Although this analysis doesn’t give detailed information on the specific sites involved, it is useful to better characterize the surface behaviour of the colloidal melanin. The results obtained demonstrate that the affinity of melanin for metal ions is very high, comparable to the most efficient materials employed in decontamination and recovery techniques. Moreover, our results demonstrate that three-parameters models, such as Langmuir-Freundlich, Redlich-Peterson and Tóth equations, fit the experimental data with great accuracy and that the adsorption follows pseudo-second-order kinetics.  相似文献   

14.
15.
The grand canonical Monte Carlo simulations of proton binding at the energetically heterogeneous metal oxide/electrolyte interface are presented. Special attention is focused on the surface topography: distribution of adsorption sites on the surface and adsorption energy among these sites. In addition to the patchwise and random topographies of adsorption energy distributions, the geometrically correlated topography (generalized Gaussian model) is tested. The adsorption isotherms appear to be extremely dependent on the assumed topography; however, this effect becomes complex if we include long-range interactions. So, the two models, one neglecting lateral interactions and another taking them into account, are considered.  相似文献   

16.
First-principles calculations based on density functional theory-generalized gradient approximation method have been performed for hydrogen (H) adsorption on Mo(1 1 0) surface. For various coverages, the hollow (hol) site was found to be the most stable binding site. The adsorption energy of this site was slightly increased as the increasing of hydrogen coverage. Subsurface (sub) occupation at low and medium coverages was ruled out while it became to be stable at the coverage of 1 ML. This is also supported by the potential energy surface (PES) study for hydrogen diffusing from hol to sub site. It’s interesting to find a surface reconstruction at the coverage of 1 ML, which is characterized by the lateral shift of the topmost layer for the sub adsorption. At higher coverage, the local density of states (LDOS) analysis showed that a new peak was clearly visible which was ascribed to a surface state induced by hydrogen adsorption. This surface state was mostly localized on the hydrogen atom and the first Mo layer, implying the hybridization of the hydrogen 1s states and the Mo metal states.  相似文献   

17.
利用同位素跳跃技术,对CO/Rh体系详细研究了不同温度下,气相压强使表面达饱和吸附时的绝对脱附速度与表面覆盖度的关系以及表面饱和覆盖度与表面温度的关系。首次找到了此条件下表面饱和覆盖度与表面温度的函数关系。发现了绝对脱附速度随饱和覆盖度的降低而增加的经验规律。由于在此条件下,绝对脱附速度等于绝对吸附速度,从而推导出绝对脱附速度与表面饱和覆盖度的关系。文献中未曾报导过把脱附动力学与化学吸附平衡相关联的实验结果。获得的经验规律对探讨吸附过程中的吸脱附以及交换机理提供了强有力的实验依据。  相似文献   

18.
We have developed a model polymer/metal composite system based on the adsorption of colloidal gold particles from a dilute aqueous suspension to the surface of poly(2-vinylpyr-idine) (PVP). Particle coverages and tracer diffusion coefficients for the particles within a PVP matrix phase were measured by Rutherford backscattering spectrometry. The adsorption process is quantitatively described by a diffusion-limited mechanism where gold particles irreversibly adsorb to the surface of the polymer film. Model dispersions produced in this way are excellent model systems for studying the fundamental properties of metal particle dispersions, since the particle size and the areal density of particles on the surface are well-controlled. Diffusion coefficients for the gold particles within PVP were also measured. The diffusion of the gold particles was found to be coupled to the bulk viscosity of the polymer, even though the size of the gold particles was only slightly larger than the mesh size of the entanglement network for PVP. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The effects of various electrolytes on the adsorption of poly(ethylene oxide) onto silica have been studied. The salts were the chlorides of Na+, Mg2+, Ca2+, and La3+. The methods used were adsorption isotherms, found using a depletion method with phosphomolibdic acid, photon correlation spectroscopy, and solvent relaxation NMR. All the salts increased the particle-polymer affinity and adsorbed amount according to the adsorption isotherms, and a linear relationship was found between the initial slope of the isotherms and the ionic strength of the solution. Final adsorbed amounts were approximately 0.4-0.5 mg m(-2). The polymer layer thicknesses as found by PCS were of the same order as the radius of gyration of the polymer and increased with both the concentration and the valency of the salt due to increased adsorption. Solvent relaxation NMR showed that NaCl is too weak to have a noticeable effect on the polymer train layer, but the divalent salts clearly did increase both the strength of solvent binding close to the silica surface and the amount of PEO required to reach the maximum train density.  相似文献   

20.
Hydrogen-bonded assembly of methanol on Cu(111)   总被引:1,自引:0,他引:1  
Investigation of methanol's surface chemistry on metals is a crucial step towards understanding the reactivity of this important chemical feedstock. Cu is a relevant metal for methanol synthesis and reforming, but due to the weak interaction of methanol with Cu, an atomic scale view of methanol's coverage-dependent ordering and self-assembly on Cu(111), the most abundant facet of most nanoparticles, has not yet been possible. Low and variable temperature scanning tunneling microscopy coupled with density functional theory reveal a coverage-dependent range of highly ordered structures stabilized by two hydrogen bonds per molecule. While extended chains that resemble the hydrogen-bonded zigzag structures reported for solid methanol are an efficient way to pack methanol at higher coverages, lower surface coverages yield isolated hexamer units. These hexamers form the same number of hydrogen bonds as the chains but appear to repel one another on the surface. Annealing treatments lead to the desorption of methanol with almost no decomposition. This data serves as a useful guide to both the preferred adsorption geometries and energies of a variety of methanol structures on Cu(111) surfaces as a function of surface coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号