首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A series of platinum(II) boryl complexes of general formula trans-[(Cy(3)P)2Pt(Br)(BX2)], including the rare dibromoboryl species trans-[(Cy(3)P)2Pt(Br)(BBr2)], were synthesized by oxidative addition of the B-Br bond of a number of bromoboranes to [Pt(PCy3)2]. X-ray diffraction studies were performed on several such compounds. Comparison of the Pt--Br bond lengths allowed an empirical assessment of the trans-influence of different boryl ligands. A trans-influence scale was thus deduced and the results were compared with those previously computed for compounds of the type trans-[(Me(3)P)2Pt(Cl)(BX2)].  相似文献   

2.
The eta(1)-borazine complexes trans-[(Cy(3)P)(2)M(Br)(Br(2)B(3)N(3)H(3))] (Cy = cyclohexyl) were prepared by oxidative addition of a B-Br bond of (BrBNH)(3) to [M(PCy(3))(2)] (M = Pd, Pt). Furthermore the platinum compound was converted into the T-shaped cationic complex trans-[(Cy(3)P)(2)Pt(Br(2)B(3)N(3)H(3))][BAr(f)(4)] [Ar(f) = 3,5-(CF(3))(2)C(6)H(3)] by addition of Na[BAr(f)(4)].  相似文献   

3.
Treatment of [Pt(PCy(3))(2)] (Cy = cyclohexyl) with BI(3) afforded trans-[(Cy(3)P)(2)Pt(I)(BI(2))] by the oxidative addition of a B-I bond. The title compound represents the first diiodoboryl complex and was fully characterized by NMR spectroscopy and X-ray diffraction analysis. The latter revealed a very short Pt-B distance, thus indicating a pronounced pi contribution to this bond. By the addition of another 1 equiv of BI(3) to trans-[(Cy(3)P)(2)Pt(I)(BI(2))], a new Pt species [(Cy(3)P)(I(2)B)Pt(mu-I)](2) was formed with concomitant buildup of the phosphine borane adduct [Cy(3)P-BI(3)]. The former is obviously obtained by abstraction of PCy(3) from trans-[(Cy(3)P)(2)Pt(I)(BI(2))] and the subsequent dimerization of two remaining fragments. Interestingly, the dimerization is reversible, and the dinuclear compound can be converted to trans-[(Cy(3)P)(2)Pt(I)(BI(2))] upon the addition of PCy(3).  相似文献   

4.
Some platinum boryl complexes of the type trans‐[(Cy3P)2Pt(Cl){B(Cl)R}] ( 1 : R = NMe2, 2 : R = Mes, 3 : R = tBu) were synthesized by oxidative addition of the corresponding dichloroboranes to [Pt(PCy3)2]. All the compounds were characterized by multinuclear NMR spectroscopy in solution. Furthermore, a single crystal analysis was acquired from 2 , that confirms the strong trans‐influence of this boryl ligand.  相似文献   

5.
The novel bimetallic micro-diboranyl-oxycarbyne bridged platinum-tungsten complex [W{eta(1),micro-CO-B(NMe(2))-B(NMe(2))-(eta(5)-C(5)H(4))}(CO)(2){Pt(PPh(3))(2)}] (W-Pt) () has been synthesised by a two-step reaction, starting from the dilithiated half-sandwich compound Li[W(eta(5)-C(5)H(4)Li)(CO)(3)] () via the ansa-diboranyl-oxycarbyne tungsten complex [W{eta(1)-CO-B(NMe(2))B(NMe(2))(eta(5)-C(5)H(4))}(OC)(2)] () by use of stoichiometric amounts of B(2)(NMe(2))(2)Br(2) and [Pt(eta(2)-C(2)H(4))(PPh(3))(2)], respectively.  相似文献   

6.
The protonation of the dinuclear phosphinito bridged complex [(PHCy2)Pt(mu-PCy2){kappa(2)P,O-mu-P(O)Cy2}Pt(PHCy2)] (Pt-Pt) (1) by Br?nsted acids affords hydrido bridged Pt-Pt species the structure of which depends on the nature and on the amount of the acid used. The addition of 1 equiv of HX (X = Cl, Br, I) gives products of formal protonation of the Pt-Pt bond of formula syn-[(PHCy2)(X)Pt(mu-PCy2)(mu-H)Pt(PHCy2){kappaP-P(O)Cy2}] (Pt-Pt) (5, X = Cl; 6, X = Br; 8, X = I), containing a Pt-X bond and a dangling kappa P-P(O)Cy2 ligand. Uptake of a second equivalent of HX results in the protonation of the P(O)Cy2 ligand with formation of the complexes [(PHCy2)(X)Pt(mu-PCy2)(mu-H)Pt(PHCy2){kappaP-P(OH)Cy2}]X (Pt-Pt) (3, X = Cl; 4, X = Br; 9, X = I). Each step of protonation is reversible, thus reactions of 3, 4, with NaOH give, first, the corresponding neutral complexes 5, 6, and then the parent compound 1. While the complexes 3 and 4 are indefinitely stable, the iodine analogue 9 transforms into anti-[(PHCy2)(I)Pt(mu-PCy2)(mu-H)Pt(PHCy2)(I)] (Pt-Pt) (7) deriving from substitution of an iodo group for the P(OH)Cy2 ligand. Complexes 3 and 4 are isomorphous crystallizing in the triclinic space group P1 and show an intramolecular hydrogen bond and an interaction between the halide counteranion and the POH hydrogen. The occurrence of such an interaction also in solution was ascertained for 3 by (35)Cl NMR. Multinuclear NMR spectroscopy (including (31)P-(1)H HOESY) and density-functional theory calculations indicate that the mechanism of the reaction starts with a prior protonation of the oxygen with formation of an intermediate (12) endowed with a six membered Pt(1)-X...H-O-P-Pt(2) ring that evolves into thermodynamically stable products featuring the hydride ligand bridging the Pt atoms. Energy profiles calculated for the various steps of the reaction between 1 and HCl showed very low barriers for the proton transfer and the subsequent rearrangement to 12, while a barrier of 29 kcal mol(-1) was found for the transformation of 12 into 5.  相似文献   

7.
Reactions of [Pt(PEt(3))(3)] (1) with the silanes HSiPh(3), HSiPh(2)Me and HSi(OEt)(3) led to the products of oxidative addition, cis-[Pt(H)(SiPh(3))(PEt(3))(2)] (2), cis-[Pt(H)(SiPh(2)Me)(PEt(3))(2)] (3), cis-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (cis-4) and trans-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (trans-4). The complexes cis-4 and trans-4 can also be generated by hydrogenolysis of (EtO)(3)SiSi(OEt)(3) in the presence of 1. Furthermore, the silyl compounds cis-4 and trans-4 react with B(C(6)F(5))(3) and CH(3)CN by hydride abstraction to give the cationic silyl complex trans-[Pt{Si(OEt)(3)}(NCCH(3))(PEt(3))(2)][HB(C(6)F(5))(3)] (8). In addition, the reactivity of the complexes cis-4, trans-4 and 8 towards alkenes and CO was studied using NMR experiments.  相似文献   

8.
The platinum(II) compounds trans-[PtX(2)(RR'C=NOH)(2)] [X = Cl, R = R' = Me, RR' = (CH(2))(4), (CH(2))(5); X = Br, R = R' = Me] react with m-chloroperoxybenzoic acid (MCPBA) in dimethylformamide to give the platinum(II) complexes [PtX(2){N(=O)CRR'ONCRR'}] containing coordinated nitrosoalkane ligands. The complexes [PtX(2){N(=O)CRR'ONCRR'}] were characterized by elemental analysis, EI-MS, IR, electronic absorption, and (1)H NMR spectroscopy; X-ray structure analysis was performed for [PtCl(2){N(=O)CC(5)H(10)ONCC(5)H(10)}]. The latter compound crystallizes in the triclinic P&onemacr; space group with a = 9.214(2) ?, b = 9.577(2) ?, c = 10.367(2) ?, alpha = 109.14(2) degrees, beta = 91.87(2) degrees, gamma = 115.62(2) degrees, V = 762.8(3) ?(3), Z = 2, and rho(calcd) = 2.135 g cm(-)(3). The reaction between trans-[PtX(2)(RR'C=NOH)(2)] and MCPBA displays a solvent dependence: interaction of these reagents in ketones, R(1)R(2)C=O, yields the platinum(IV) chelates [PtX(2)(OCR(1)R(2)ON=CRR')(2)], while the oxidation state of the oxime N atom remains unchanged. Heating [PtCl(2)(OCR(1)R(2)ON=CRR')(2)] in DMF or in DMF-d(7) at 100 degrees C leads to the extrusion of R(1)R(2)C=O and the formation of [PtCl(2){N(=O)CRR'ONCRR'}].  相似文献   

9.
Density Functional Theory calculations have been performed for the cationic half-sandwich gallylene complexes of iron, ruthenium, and osmium [(η(5)-C(5)H(5))(L)(2)M(GaX)](+) (M = Fe, L = CO, PMe(3); X = Cl, Br, I, NMe(2), Mes; M = Ru, Os: L = CO, PMe(3); X = I, NMe(2), Mes) at the BP86/TZ2P/ZORA level of theory. Calculated geometric parameters for the model iron iodogallylene system [(η(5)-C(5)H(5))(Me(3)P)(2)Fe(GaI)](+) are in excellent agreement with the recently reported experimental values for [(η(5)-C(5)Me(5))(dppe)Fe(GaI)](+). The M-Ga bonds in these systems are shorter than expected for single bonds, an observation attributed not to significant M-Ga π orbital contributions, but due instead primarily to high gallium s-orbital contributions to the M-Ga bonding orbitals. Such a finding is in line with the tenets of Bent's Rule insofar as correspondingly greater gallium p-orbital character is found in the bonds to the (more electronegative) gallylene substituent X. Consistent with this, ΔE(σ) is found to be overwhelmingly the dominant contribution to the orbital interaction between [(η(5)-C(5)H(5))(L)(2)M](+) and [GaX] fragments (with ΔE(π) equating to only 8.0-18.6% of the total orbital contributions); GaX ligands thus behave as predominantly σ-donor ligands. Electrostatic contributions to the overall interaction energy ΔE(int) are also very important, being comparable in magnitude (or in some cases even larger than) the corresponding orbital interactions.  相似文献   

10.
Tantalum complexes [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NMe(2))=CH)py}] (4) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NH(2))=CH)py}] (5), which contain modified alkoxide pincer ligands, were synthesized from the reactions of [TaCp*Me{κ(3)-N,O,O-(OCH(2))(OCH)py}] (Cp* = η(5)-C(5)Me(5)) with HC≡CCH(2)NMe(2) and HC≡CCH(2)NH(2), respectively. The reactions of [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(Ph)=CH)py}] (2) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(SiMe(3))=CH)py}] (3) with triflic acid (1:2 molar ratio) rendered the corresponding bis-triflate derivatives [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(Ph)=CH(2))py}] (6) and [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(SiMe(3))=CH(2))py}] (7), respectively. Complex 4 reacted with triflic acid in a 1:2 molar ratio to selectively yield the water-soluble cationic complex [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH)py}]OTf (8). Compound 8 reacted with water to afford the hydrolyzed complex [TaCp*(OH)(H(2)O){κ(3)-N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH(2))py}](OTf)(2) (9). Protonation of compound 8 with triflic acid gave the new tantalum compound [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH)py}](OTf)(2) (10), which afforded the corresponding protonolysis derivative [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH(2))py}](OTf) (11) in solution. Complex 8 reacted with CNtBu and potassium 2-isocyanoacetate to give the corresponding iminoacyl derivatives 12 and 13, respectively. The molecular structures of complexes 5, 7, and 10 were established by single-crystal X-ray diffraction studies.  相似文献   

11.
Diffusion of ammonia into CH(2)Cl(2) solutions of the dialkylcyanamide complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = NMe(2), NEt(2), NC(5)H(10)) at 20-25 degrees C leads to metal-mediated cyanamide-ammonia coupling to furnish, depending on reaction time, one or another type of novel bisguanidine compound, i.e. the molecular cis- or trans-[PtCl(2){NH=C(NH(2))R}(2)] (cis- and trans-) and the cationic cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-) complexes. Compounds cis- or trans- were converted to cis- or trans-, accordingly, upon prolonged treatment with NH(3) in CH(2)Cl(2). The ammination of the relevant nitrile complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) in CH(2)Cl(2) solutions affords only the cationic compounds cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-). The formulation of was supported by satisfactory C, H and N elemental analyses, agreeable ESI(+)-MS (or FAB(+)-MS), IR, (1)H and (13)C NMR spectroscopies. The structures of trans-, trans-, cis-, trans-, cis-, and cis- were determined by single-crystal X-ray diffraction disclosing structural features and showing that the ammination gives ligated guanidines and amidines in the E- and Z-forms, respectively, where both correspond to the trans-addition of NH(3) to the nitrile species.  相似文献   

12.
A range of new iminoborylcomplexes of the type [L(n)M-B[triple bond]N-R], which are isoelectronic with sigma-alkynyl complexes [L(n)M-C[triple bond]C-R], was obtained by systematically varying the metal M, the coligands L, and the nitrogen bound substituent R. Selected examples include, for example, trans-[(Cy3P)2(Br)Pt(B[triple bond]N iBu)], which is characterized by a sterically less demanding N-R group or the unprecedented rhodium species cis,mer-[(Br)2(Me3P)3Rh(B[triple bond]NSiMe3)]. All compounds were fully characterized in solution by multinuclear NMR spectroscopy and, where appropriate, in the solid state by X-ray crystallography. Subsequent reactivity studies revealed that particularly the combination of smaller N-R groups with Pt-B linkages of increased stability opens up opportunities for novel reactivity patterns of this class of compounds. Within the scope of these study, we inter alia succeeded in synthesizing the unusual bridged boryl species 1,4-trans-[{(Cy3P)2(Br)Pt(B{NH iBu}NH)}2C6H4] and a complex bearing both an acetylide ligand and an iminoboryl ligand, respectively.  相似文献   

13.
A study is presented of the thermodynamics of the halogen-bonding interaction of C(6)F(5)I with a series of structurally similar group 10 metal fluoride complexes trans-[Ni(F)(2-C(5)NF(4))(PCy(3))(2)] (2), trans-[Pd(F)(4-C(5)NF(4))(PCy(3))(2)] (3), trans-[Pt(F){2-C(5)NF(2)H(CF(3))}(PR(3))(2)] (4a, R = Cy; 4bR = iPr) and trans-[Ni(F){2-C(5)NF(2)H(CF(3))}(PCy(3))(2)] (5a) in toluene solution. (19)F NMR titration experiments are used to determine binding constants, enthalpies and entropies of these interactions (2.4 ≤ K(300) ≤ 5.2; -25 ≤ ΔH(o) ≤ -16 kJ mol(-1); -73 ≤ ΔS(o) ≤ -49 J K(-1) mol(-1)). The data for -ΔH(o) for the halogen bonding follow a trend Ni < Pd < Pt. The fluoropyridyl ligand is shown to have a negligible influence on the thermodynamic data, but the influence of the phosphine ligand is significant. We also show that the value of the spin-spin coupling constant J(PtF) increases substantially with adduct formation. X-ray crystallographic data for Ni complexes 5a and 5c are compared to previously published data for a platinum analogue. We show by experiment and computation that the difference between Pt-X and Ni-X (X = F, C, P) bond lengths is greatest for X = F, consistent with F(2pπ)-Pt(5dπ) repulsive interactions. DFT calculations on the metal fluoride complexes show the very negative electrostatic potential around the fluoride. Calculations of the enthalpy of adduct formation show energies of -18.8 and -22.8 kJ mol(-1) for Ni and Pt complexes of types 5 and 4, respectively, in excellent agreement with experiment.  相似文献   

14.
Treatment of a toluene solution of [PdMe(2)(Cy(2)PCH(2)PCy(2))](1) with pentafluoropyridine in the presence of traces of water affords the generation of the A-frame complexes [(PdMe)(2){mu-kappa(2)(P,P)Cy(2)PCH(2)PCy(2)}(2)(mu-F)][SiMeF(4)]() and [(PdMe)(2){mu-kappa(2)(P,P)Cy(2)PCH(2)PCy(2)}(2)(mu-F)][OC(5)NF(4)](2b). If the reaction is performed in an NMR tube equipped with a PFA inliner, complex 2b is produced, only. Treatment of 1 with pentafluoropyridine in the presence of an excess water yields the pyridyloxy complex [PdMe(OC(5)NF(4))(Cy(2)PCH(2)PCy(2))](3). Compound [(PdMe)(2){mu-kappa(2)(P,P)Cy(2)PCH(2)PCy(2)}(2)(mu-F)][FHF](2c) bearing a bifluoride anion instead of SiMeF(4)(-) or OC(5)NF(4)(-) can be generated by reaction of 1 with substoichiometric amounts of Et(3)N.3HF. The analogous complex [(PdMe)(2){mu-kappa(2)(P,P)Ph(2)PCH(2)PPh(2)}(2)(mu-F)][FHF] (5c) has been synthesized by addition of Ph(2)PCH(2)PPh(2) to a solution of [PdMe(2)(Me(2)NCH(2)CH(2)NMe(2))](4) in THF and subsequent treatment of the reaction mixture with Et(3)N.3HF. The structure of the A-frame complex 5c has been determined by X-ray crystallography.  相似文献   

15.
The polystyrene-immobilised palladacyclic complexes [Pd(TFA)(kappa2-N,C-C6H4CH2NMe2){P(C6H4-4-PS)Cy2}] and [PdCl(kappa2-P,C-{P(OC6H2-2,4-tBu2)(OC6H3-2,4-tBu2)2}{P(C6H4-4-PS)Cy2}](PS = polystyrene) and the homogeneous analogues [Pd(TFA)(kappa2-N,C-C6H4CH2NMe2)(PPhCy2)] and PdCl(kappa2-P,C-{P(OC6H2-2,4-tBu2)(OC6H3-2,4-tBu2)2}(PPhCy2)] were synthesised and characterised. The X-ray structure of one of the homogeneous analogues, [Pd(TFA)(kappa2-N,C-C6H4CH2NMe2)(PPhCy2)] was determined. All the complexes have been tested and show good activity in the Suzuki coupling of aryl chloride substrates. While the polystyrene-immobilised complexes are not recyclable, they are easily extracted and show low levels of palladium leaching.  相似文献   

16.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

17.
The species Cy(2)PHC(6)F(4)BF(C(6)F(5))(2) reacts with Pt(PPh(3))(4) to yield the new product cis-(PPh(3))(2)PtH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 1 via oxidative addition of the P-H bond of the phosphonium borate to Pt(0). The corresponding reaction with Pd(PPh(3))(4) affords the Pd analogue of 1, namely, cis-(PPh(3))(2)PdH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 3; while modification of the phosphonium borate gave the salt [(PPh(3))(3)PtH][(tBu(2)PC(6)F(4)BF(C(6)F(5))(2))] 2. Alternatively initial deprotonation of the phosphonium borate gave [tBu(3)PH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 4, [SIMesH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 5 which reacted with NiCl(2)(DME) yielding [BaseH](2)[trans-Cl(2)Ni(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 6, SIMes 7) or with PdCl(2)(PhCN)(2) to give [BaseH](2)[trans-Cl(2)Pd(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 8, SIMes 9). While [C(10)H(6)N(2)(Me)(4)H][tBu(2)PC(6)F(4)BF(C(6)F(5))(2)] 10 was also prepared. A third strategy for formation of a metal complex of anionic phosphine-borate derivatives was demonstrated in the reaction of (COD)PtMe(2) with the neutral phosphine-borane Mes(2)PC(6)F(4)B(C(6)F(5))(2) affording (COD)PtMe(Mes(2)PC(6)F(4)BMe(C(6)F(5))(2)) 11. Extension of this reactivity to tBu(2)PH(CH(2))(4)OB(C(6)F(5))(3)) was demonstrated in the reaction with Pt(PPh(3))(4) which yielded cis-(PPh(3))(2)PtH(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)) 12, while the reaction of [SIMesH][tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)] 13 with NiCl(2)(DME) and PdCl(2)(PhCN)(2) afforded the complexes [SIMesH](2)[trans-Cl(2)Ni(tBu(2)PC(4)H(8)OB(C(6)F(5))(3))(2)] 14 and [SIMesH](2)[trans-PdCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))(2)] 15, respectively, analogous to those prepared with 4 and 5. Finally, the reaction of 7 and 13with [(p-cymene)RuCl(2)](2) proceeds to give the new orange products [SIMesH][(p-cymene)RuCl(2)(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))] 16 and [SIMesH][(p-cymene)RuCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))] 17, respectively. Crystal structures of 1, 6, 10, 11, 12, and 16 are reported.  相似文献   

18.
Complexes cis-[M(C(6)F(5))(2)(THF)(2)] (M = Pd, Pt) are weak Lewis acids and react with the halocarbon ligand 2-iodoaniline (R-I) yielding the corresponding cis-[M(C(6)F(5))(2)(R-I)] [M = Pd (1), Pt (2)]. In these complexes a (C-)I-M bond is present. The use of other 2-haloanilines (halogen = F, Cl, Br) does not yield the analogous complexes because of the lesser nucleophilic character of the halogen involved. The presence of the (C-)I-Pt bond in 2 has been confirmed by an X-ray structure determination, which also reveals an N-H.M hydrogen bond between two neutral molecules. Complex 2 crystallizes in the space group P&onemacr;: Z = 4; a = 11.797(4) ?; b = 13.735(4) ?; c = 14.107(4) ?; alpha = 97.24(2) degrees; beta = 90.91(2) degrees; gamma = 99.44(2) degrees; V = 2235(2) ?(3). Similarly, complexes cis-[M(C(6)X(5))(2)(THF)(2)] (M = Pd, Pt; X = F, Cl) react with the ligand 2-benzoylpyridine {R-C(O)Ph}, in which the oxygen atom of the ketonic group can behave as a nucleophilic center, yielding the complexes cis-[M(C(6)X(5))(2){R-C(O)Ph}] [M = Pd, X = F (3); M = Pt, X = F (4), Cl (5)]. Complex 3 crystallizes in the space group C2/c: Z = 16; a = 26.284(3) ?; b = 10.623(1) ?; c = 31.423(4) ?; beta = 93.15(1) degrees; V = 8760(2) ?(3). The I-M or O-M bonds in complexes 1-5 are weak and can be easily broken by the addition of neutral (CO, PPh(3), and CH(3)CN) or anionic (Br(-)) ligands.  相似文献   

19.
TeF(4) reacts with OPR(3) (R = Me or Ph) in anhydrous CH(2)Cl(2) to give the colourless, square based pyramidal 1?:?1 complexes [TeF(4)(OPR(3))] only, in which the OPR(3) is coordinated basally in the solid state, (R = Me: d(Te-O) = 2.122(2) ?; R = Ph: d(Te-O) = 2.1849(14) ?). Variable temperature (19)F{(1)H}, (31)P{(1)H} and (125)Te{(1)H} NMR spectroscopic studies strongly suggest this is the low temperature structure in solution, although the systems are dynamic. The much softer donor ligands SMe(2) and SeMe(2) show a lower affinity for TeF(4), although unstable, yellow products with spectroscopic features consistent with [TeF(4)(EMe(2))] are obtained by the reaction of TeF(4) in neat SMe(2) or via reaction in CH(2)Cl(2) with SeMe(2). TeX(4) (X = F, Cl or Br) causes oxidation and halogenation of TeMe(2) to form X(2)TeMe(2). The Br(2)TeMe(2) hydrolyses in trace moisture to form [BrMe(2)Te-O-TeMe(2)Br], the crystal structure of which has been determined. TeX(4) (X = Cl or Br) react with the selenoethers SeMe(2), MeSe(CH(2))(3)SeMe or o-C(6)H(4)(SeMe)(2) (X = Cl) in anhydrous CH(2)Cl(2) to give the distorted octahedral monomers trans-[TeX(4)(SeMe(2))(2)], cis-[TeX(4){MeSe(CH(2))(3)SeMe}] and cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], which have been characterised by IR, Raman and multinuclear NMR ((1)H, (77)Se{(1)H} and (125)Te{(1)H}) spectroscopy, and via X-ray structure determinations of representative examples. Tetrahydrothiophene (tht) can form both 1?:?1 and 1?:?2 Te?:?L complexes. For X = Br, the former has been shown to be a Br-bridged dimer, [Br(3)(tht)Te(μ-Br)(2)TeBr(3)(tht)], by crystallography with the tht ligands anti, whereas the latter are trans-octahedral monomers. Like its selenoether analogue, MeS(CH(2))(3)SMe forms distorted octahedral cis-chelates, [TeX(4){MeS(CH(2))(3)SMe}], whereas the more rigid o-C(6)H(4)(SMe)(2) unexpectedly forms a zig-zag chain polymer in the solid state, [TeCl(4){o-C(6)H(4)(SMe)(2)}](n), in which the dithioether adopts an extremely unusual bridging mode. This is in contrast to the chelating monomer, cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], formed with the analogous selenoether and may be attributed to small differences in the ligand chelate bite angles. The wider bite angle xylyl-linked bidentates, o-C(6)H(4)(CH(2)EMe(2))(2) behave differently; the thioether forms cis-chelated [TeX(4){o-C(6)H(4)(CH(2)SMe)(2)}] confirmed crystallographically, whereas the selenoether undergoes C-Se cleavage and rearrangement on treatment with TeX(4), forming the cyclic selenonium salts, [C(9)H(11)Se](2)[TeX(6)]. The tetrathiamacrocycle, [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane), does not react cleanly with TeCl(4), but forms the very poorly soluble [TeCl(4)([14]aneS(4))](n), shown by crystallography to be a zig-zag polymer with exo-coordinated [14]aneS(4) units linked via alternate S atoms to a cis-TeCl(4) unit. Trends in the (125)Te{(1)H} NMR shifts for this series of Te(iv) halides chalcogenoether complexes are discussed.  相似文献   

20.
The reaction of 9,10-phenanthrenequinone (PQ) with [M(II)(H)(CO)(X)(PPh(3))(3)] in boiling toluene leads to the homolytic cleavage of the M(II)-H bond, affording the paramagnetic trans-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 1; M = Os, X = Br, 3) and cis-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 2; M = Os, X = Br, 4) complexes. Single-crystal X-ray structure determinations of 1, 2·toluene, and 4·CH(2)Cl(2), EPR spectra, and density functional theory (DFT) calculations have substantiated that 1-4 are 9,10-phenanthrenesemiquinone radical (PQ(?-)) complexes of ruthenium(II) and osmium(II) and are defined as trans-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (1), cis-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (2), trans-[Os(II)(PQ(?-))(PPh(3))(2)(CO) Br] (3), and cis-[Os(II)(PQ(?-))(PPh(3))(2)(CO)Br] (4). Two comparatively longer C-O [average lengths: 1, 1.291(3) ?; 2·toluene, 1.281(5) ?; 4·CH(2)Cl(2), 1.300(8) ?] and shorter C-C lengths [1, 1.418(5) ?; 2·toluene, 1.439(6) ?; 4·CH(2)Cl(2), 1.434(9) ?] of the OO chelates are consistent with the presence of a reduced PQ(?-) ligand in 1-4. A minor contribution of the alternate resonance form, trans- or cis-[M(I)(PQ)(PPh(3))(2)(CO)X], of 1-4 has been predicted by the anisotropic X- and Q-band electron paramagnetic resonance spectra of the frozen glasses of the complexes at 25 K and unrestricted DFT calculations on 1, trans-[Ru(PQ)(PMe(3))(2)(CO)Cl] (5), cis-[Ru(PQ)(PMe(3))(2)(CO)Cl] (6), and cis-[Os(PQ)(PMe(3))(2)(CO)Br] (7). However, no thermodynamic equilibria between [M(II)(PQ(?-))(PPh(3))(2)(CO)X] and [M(I)(PQ)(PPh(3))(2)(CO)X] tautomers have been detected. 1-4 undergo one-electron oxidation at -0.06, -0.05, 0.03, and -0.03 V versus a ferrocenium/ferrocene, Fc(+)/Fc, couple because of the formation of PQ complexes as trans-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (1(+)), cis-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (2(+)), trans-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (3(+)), and cis-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (4(+)). The trans isomers 1 and 3 also undergo one-electron reduction at -1.11 and -0.96 V, forming PQ(2-) complexes trans-[Ru(II)(PQ(2-))(PPh(3))(2)(CO)Cl](-) (1(-)) and trans-[Os(II)(PQ(2-))(PPh(3))(2)(CO)Br](-) (3(-)). Oxidation of 1 by I(2) affords diamagnetic 1(+)I(3)(-) in low yields. Bond parameters of 1(+)I(3)(-) [C-O, 1.256(3) and 1.258(3) ?; C-C, 1.482(3) ?] are consistent with ligand oxidation, yielding a coordinated PQ ligand. Origins of UV-vis/near-IR absorption features of 1-4 and the electrogenerated species have been investigated by spectroelectrochemical measurements and time-dependent DFT calculations on 5, 6, 5(+), and 5(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号