首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
大型陀螺特征值问题的广义Arnoldi减缩算法   总被引:5,自引:0,他引:5  
基于Arnoldi法,建立陀螺特征值问题的广义Arnoldi格式,并利用系统矩阵的反对称特性,得到极其简洁的甚至比对称矩阵Lanczos法更为简单的递推格式,可称为陀螺Arnoldi减缩算法。  相似文献   

2.
《Comptes Rendus Mecanique》2017,345(2):130-136
In this paper, an efficient and robust numerical method is proposed to solve non-symmetric eigenvalue problems resulting from the spatial discretization with the finite element method of a vibroacoustic interior problem. The proposed method relies on a perturbation method. Finding the eigenvalues consists in determining zero values of a scalar that depends on angular frequency. Numerical tests show that the proposed method is not sensitive to poorly conditioned matrices resulting from the displacement–pressure formulation. Moreover, the computational times required with this method are lower than those needed with a classical technique such as, for example, the Arnoldi method.  相似文献   

3.
EIGENVALUE PROBLEM OF A LARGE SCALE INDEFINITE GYROSCOPIC DYNAMIC SYSTEM   总被引:3,自引:0,他引:3  
Gyroscopic dynamic system can be introduced to Hamiltonian system.Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system, an adjoint symplectic subspace iteration method of indefinite Hamiltonian function gy- roscopic system was proposed to solve the eigenvalue problem of indefinite Hamiltonian function gyroscopic system.The character that the eigenvalues of Hamiltonian gyroscopic system are only pure imaginary or zero was used.The eigenvalues that Hamiltonian function is negative can be separated so that the eigenvalue problem of positive definite Hamiltonian function system was presented,and an adjoint symplectic subspace iteration method of positive definite Hamiltonian function system was used to solve the separated eigenvalue problem.Therefore,the eigenvalue problem of indefinite Hamiltonian function gyroscopic system was solved,and two numerical examples were given to demonstrate that the eigensolutions converge exactly.  相似文献   

4.
The aim of this paper is to show that the Jacobi–Davidson (JD) method is an accurate and robust method for solving large generalized algebraic eigenvalue problems with a singular second matrix. Such problems are routinely encountered in linear hydrodynamic stability analysis of flows that arise in various areas of continuum mechanics. As we use the Chebyshev collocation as a discretization method, the first matrix in the pencil is nonsymmetric, full rank, and ill‐conditioned. Because of the singularity of the second matrix, QZ and Arnoldi‐type algorithms may produce spurious eigenvalues. As a systematic remedy of this situation, we use two JD methods, corresponding to real and complex situations, to compute specific parts of the spectrum of the eigenvalue problems. Both methods overcome potentially severe problems associated with spurious unstable eigenvalues and are fairly stable with respect to the order of discretization. The real JD outperforms the shift‐and‐invert Arnoldi method with respect to the CPU time for large discretizations. Three specific flows are analyzed to advocate our statements, namely a multicomponent convection–diffusion in a porous medium, a thermal convection in a variable gravity field, and the so‐called Hadley flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
任革学  郑兆昌 《力学学报》1996,28(6):707-716
基于陀螺模态综合法,从总装阵的块式结构出发,构造性地证明了具有n片桨叶的旋翼型结构陀螺特征值问题存在一系列的(n-3)重特征根,得到了对应的(n-3)个完备的振型.结论进而推广到有阻尼的旋翼型结构.继续研究证明过程表明:结论适用于更广泛的一类具有重复子结构的结构系统,结果表明这类结构几何上的重复性或对称性导致的重根不会引入退化性.不同类型的算例验证了所得到的解析结果.本文还试图说明动力子结构法的定性性质保持特性是值得继续探讨的课题  相似文献   

6.
基于陀螺模态综合法,从总装阵的块式结构出发,构造性地证明了具有n片桨叶的旋翼型结构陀螺特征值问题存在一系列的(n-3)重特征根,得到了对应的(n-3)个完备的振型.结论进而推广到有阻尼的旋翼型结构.继续研究证明过程表明:结论适用于更广泛的一类具有重复子结构的结构系统,结果表明这类结构几何上的重复性或对称性导致的重根不会引入退化性.不同类型的算例验证了所得到的解析结果.本文还试图说明动力子结构法的定性性质保持特性是值得继续探讨的课题  相似文献   

7.
This paper presents the mathematical approach for the abnormal multiplication of plankton. An abnormal multiplication can be expressed as an unstable problem and the stability of the system is investigated by introducing eigenvalues of a mathematical equation. The stability of the system can be judged by an eigenvalue based on the Lyapunov's stability theory. In this paper, the Arnoldi‐QR method is used to obtain eigenvalues and eigenvectors of the system. The mode superposition method is employed to create spatial distribution needed to analyse the stability. To obtain the objective eigenvalue, the parameter identification technique is employed. The finite element method is used for the discretization in space. Lake Kasumigaura, which is located in Ibaraki Prefecture in Japan, is selected and actual data in 1975, 1976, 1991 and 2000 are used in order to investigate the stability of the specified lake in Japan. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
无阻尼或比例阻尼结构系统经粘弹阻尼修改后,可变为粘弹性阻尼系统。要获得其动特性,需求解复特征值问题。但是,随之带来了计算量大、费用高等问题。尤其是粘弹性材料特性随频率而变化,需求解高阶非线性复特征值问题,这对于一个自由度较大的结构,计算量太大,通常较难实现。本文在特征值修改方法的基础上,提出粘弹性阻尼局部动力修改方法,即仅需已知原结构系统的实模态参数,就可求出粘弹阻尼修改后系统的复模态参数。还发展了特征值和修改量同时迭代方法,有效地解决了粘弹材料复模量随频率变化引起的非线性复特征值问题。  相似文献   

9.
This paper presents an approach for determining the linear stability of steady states of partial differential equations (PDEs) on massively parallel computers. Linearizing the transient behavior around a steady state solution leads to an eigenvalue problem. The eigenvalues with the largest real part are calculated using Arnoldi's iteration driven by a novel implementation of the Cayley transformation. The Cayley transformation requires the solution of a linear system at each Arnoldi iteration. This is done iteratively so that the algorithm scales with problem size. A representative model problem of three‐dimensional incompressible flow and heat transfer in a rotating disk reactor is used to analyze the effect of algorithmic parameters on the performance of the eigenvalue algorithm. Successful calculations of leading eigenvalues for matrix systems of order up to 4 million were performed, identifying the critical Grashof number for a Hopf bifurcation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The Chebyshev tau method is examined; a numerical technique which in recent years has been successfully applied to many hydrodynamic stability problems. The orthogonality of Chebyshev functions is used to rewrite the differential equations as a generalized eigenvalue problem. Although a very efficient technique, the occurrence of spurious eigenvalues, which are not always easy to identify, may lead one to believe that a system is unstable when it is not. Thus, the elimination of spurious eigenvalues is of great importance. Boundary conditions are included as rows in the matrices of the generalized eigenvalue problem and these have been observed to be one cause of spurious eigenvalues. Removing boundary condition rows can be difficult. This problem is addressed here, in application to the Bénard convection problem, and to the Orr-Sommerfeld equation which describes parallel flow. The procedure given here can be applied to a wide range of hydrodynamic stability problems.Received: 4 July 2002, Accepted: 13 September 2002, Published online: 27 June 2003  相似文献   

11.
随机参数结构的统计特征对   总被引:3,自引:1,他引:2  
黄斌 《固体力学学报》2005,26(1):121-124
结合非正交多项式展式和传统的摄动技巧研究了随机参数结构的统计特征对问题,建立了和摄动法类似的一系列确定的递推方程,并用有限元方法进行了求解,得到了包括特征值和特征向量的特征对的统计值.最后,用算例验证了此方法的正确性.  相似文献   

12.
随机结构系统的一般实矩阵特征值问题的概率分析   总被引:9,自引:0,他引:9  
由于工程实际结构的复杂性和所用材料在统计上的离散性以及测量、加工、制造误差的存在,必然导致具有随机参数的随机结构振动系统,按结构参数的性质来划分,随机振动问题包括两方面内容:(1)确定结构问题;(2)随机结构问题。本文以现代数学理论为依托,研究了随机结构系统的一般实矩阵的特征值问题。根据Kronecker代数、向量值和矩阵值函数的灵敏度分析、一般二阶矩法和概率摄动技术给出了计算随机结构系统的一般实矩阵的特征值和特征向量的数值方法,可以有效地得出随机结构系统的一般实矩阵的特征向量的统计量,发展了2D矩阵值函数的随机结构系统的特征值问题概率分析理论。  相似文献   

13.
Simulating numerically the sound radiation of a rolling tire requires the solution of a very large and sparse gyroscopic eigenvalue problem. Taking advantage of the automated multi-level substructuring (AMLS) method it can be projected to a much smaller gyroscopic problem, the solution of which however is still quite costly since the eigenmodes are non-real and complex arithmetic is necessary. This paper discusses the application of AMLS to huge gyroscopic problems and the numerical solution of the AMLS reduction. A numerical example demonstrates the efficiency of AMLS.  相似文献   

14.
陀螺效应对转子横向振动的影响分析   总被引:10,自引:0,他引:10  
举例说明了在动力转子系统中陀螺效应对实际模型的影响。着重分析了转子陀螺效应对进动角速度、振型以及临界角速度的影响。并应用状态空间法求解陀螺系统的本征值问题。数值结果表明,在一些工程问题中,陀螺力对于转子系统振动特性的影响是不能忽略的。  相似文献   

15.
高兴军  马海涛 《力学学报》2014,46(5):739-746
采用固体各向同性材料惩罚模型(solid isotropic material with penalization, SIMP) 进行动力拓朴优化通常在优化过程中会出现虚假的局部振动模态,为消除这种虚假模态产生的不利影响,提出了移频与虚假模态识别相结合的通用方法. 研究中考虑以材料体积为约束、结构基频最大化为目标的优化模型,并采用节点设计变量描述设计域内材料分布. 基于虚假模态的特性,首先在特征值分析中应用移频方法排除特征值接近于零的低阶虚假模态,然后再依据虚假模态识别准则判定并剔除其他可能存在的虚假模态,从而可以高效可靠地确定结构真实的固有振动模态. 数值算例表明,提出的方法可以有效地消除动力拓扑优化中虚假模态可能产生的不利影响,并保证优化解的可靠性.   相似文献   

16.
It is well known that the boundary element method may induce spurious eigenvalues while solving eigenvalue problems. The finding that spurious eigenvalues depend on the geometry of inner boundary and the approach utilized has been revealed analytically and numerically in the literature. However, all the related efforts were focused on eigenproblems involving circular boundaries. On the other hand, the extension to elliptical boundaries seems not straightforward and lacks of attention. Accordingly, this paper performs an analytical investigation of spurious eigenvalues for a confocal elliptical membrane using boundary integral equation methods (BIEM) in conjunction with separable kernels and eigenfunction expansion. To analytically study this eigenproblem, the elliptic coordinates and Mathieu functions are adopted. The fundamental solution is expanded into the separable kernel by using the elliptic coordinates and the boundary densities are expanded by using the eigenfunction expansion. The Jacobian terms may exist in the separable kernel, boundary density and boundary contour integration and they can cancel each other out. Therefore, the orthogonal relations are reserved in the boundary contour integration. In this way, a similar finding about the mechanism of spurious eigenvalues is found and agrees with those corresponding to the annular case. To verify this finding, the boundary element method and the commercial finite-element code ABAQUS are also utilized to provide eigensolutions, respectively, for comparisons. Good agreement is observed from comparisons. Based on the adaptive observer system, the present approach can deal with eigenproblems containing circular and elliptical boundaries at the same time in a semi-analytical manner. By using the BIEM, it is found that spurious eigenvalues are the zeros of the modified Mathieu functions which depend on the inner elliptical boundary and the integral formulation. Finally, several methods including the CHIEF method, the SVD updating technique and the Burton & Miller method are employed to filter out the spurious eigenvalues, respectively. In addition, the efficiency of the CHIEF method is better than those of the SVD updating technique and the Burton & Miller approach, since not only hypersingularity is avoided but also computation effort is saved.  相似文献   

17.
张腾 《计算力学学报》2024,41(1):209-216
辛弹性力学已广泛应用于弹性学中各种边值问题的精确解、计算表面波模式以及预测多层超弹性薄膜中的表面褶皱。本文展示了辛分析框架还可应用于受约束介电弹性体中的表面褶皱。机械和电位移向量是两个基本变量来描述介电弹性体中机械变形与电场紧密耦合。褶皱的临界电压可以通过引入基本变量的对偶变量来从辛本征值问题中解决。本文采用扩展的W-W(Wittrick-Williams)算法和精确的积分方法,准确而高效地解决制定的辛本征值问题的本征值。通过将褶皱电压和波数与有无表面能的褶皱基准结果进行比较,验证了辛分析的有效性。辛分析框架简洁且适用于其他不稳定问题,如分层电介质弹性体、磁弹性不稳定性以及层压复合结构的微观和宏观不稳定性。  相似文献   

18.
A general method is formulated to estimate damage location and extent from the explicit perturbation terms in specific set of eigenvectors and eigenvalues. At first, perturbed orthonormal equation is generated from the perturbation of eigenvectors and eigenvalues to obtain the k-th explicit perturbation coefficients. At second, perturbed eigenvalue equation is generated from the perturbation of eigenvector and eigenvalue, and first-order expansion of the stiffness matrix to obtain other explicit perturbation coefficients. Stiffness parameters are computed from these equations using an optimization method. The algorithm is iterative and terminates under certain criteria. A fixed–fixed modular beam with various numbers of elements is used as test structure to investigate the applicability of the developed approach. By comparison with the Euler–Bernoulli beam, discretization errors are analyzed. In six elements beam, first-order algorithm converges faster for small percentage damage. Second-order algorithm is more efficient for medium percentage damage. For large percentage damage, the second-order algorithm converges more effectively. Meanwhile, for eight elements large percentage damage and ten elements small percentage damage, second-order algorithm converges faster to the termination criterion.  相似文献   

19.
We will derive the fundamental generalized displacement solution, using the Radon transform, and present the direct formulation of the time-harmonic boundary element method (BEM) for the two-dimensional general piezoelectric solids. The fundamental solution consists of the static singular and the dynamics regular parts; the former, evaluated analytically, is the fundamental solution for the static problem and the latter is given by a line integral along the unit circle. The static BEM is a component of the time-harmonic BEM, which is formulated following the physical interpretation of Somigliana’s identity in terms of the fundamental generalized line force and dislocation solutions obtained through the Stroh–Lekhnitskii (SL) formalism. The time-harmonic BEM is obtained by adding the boundary integrals for the dynamic regular part which, from the original double integral representation over the boundary element and the unit circle, are reduced to simple line integrals along the unit circle.The BEM will be applied to the determination of the eigen frequencies of piezoelectric resonators. The eigenvalue problem deals with full non-symmetric complex-valued matrices whose components depend non-linearly on the frequency. A comparative study will be made of non-linear eigenvalue solvers: QZ algorithm and the implicitly restarted Arnoldi method (IRAM). The FEM results whose accuracy is well established serve as the basis of the comparison. It is found that the IRAM is faster and has more control over the solution procedure than the QZ algorithm. The use of the time-harmonic fundamental solution provides a clean boundary only formulation of the BEM and, when applied to the eigenvalue problems with IRAM, provides eigen frequencies accurate enough to be used for industrial applications. It supersedes the dual reciprocity BEM and challenges to replace the FEM designed for the eigenvalue problems for piezoelectricity.  相似文献   

20.
The eigenvalue problem about a nonhomogeneous semi-infinite strip is investigated using the methodology proposed by Papkovich and Fadle for homogeneous plane problems. Two types of nonhomogeneity are considered: (i) the elastic modulus varying with the thickness coor- dinate x exponentially, (ii) it varying with the length coordinate y exponentially. The eigenvalues for the two cases are obtained numerically in plane strain and plane stress states, respectively. By considering the smallest positive eigenvalue, tile Saint-Venant Decay rates are estimated, which indicates material nonhomogeneity has a signifcant influence on the Saint-Venant end effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号