首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The exact solution for a polaron in a lattice with cubic nonlinearity is obtained. The electron–phonon interaction is taken into account in the Su–Schrieffer–Heeger approximation. The system of nonlinear differential equations in partial derivatives, obtained in the continuum approximation, is exactly integrable at a certain ratio between the parameters of nonlinearity, α, and the electron–phonon interaction, χ. An approximate solution is obtained for arbitrary values of α and χ. A good agreement between the analytical results with the numerical simulation is observed at not too large values of parameters α and χ, where the continuum approximation is valid. Stable solutions also exist at higher values of these parameters.  相似文献   

2.
A semi-empirical Peierls–Holstein model is applied to studies of the stability of polarons in two-dimensional molecular crystal systems. Calculations for a broad range of intra- and inter-molecular parameters within this model were performed in order to obtain detailed knowledge concerning the stability of the polaron solution with respect to a rigid lattice band solution. For realistic values of the parameters the polaron solution is stable with a polaron energy in the range 50–100 meV. A metastable polaron solution is also identified. The polarons that result from our model are highly localized and it is questionable if adiabatic polaron transport can occur in the system.  相似文献   

3.
The vibration of an Euler-Bernoulli beam, resting on a nonlinear Kelvin-Voight viscoelastic foundation, traversed by a moving load is studied in the frequency domain. The objective is to obtain the frequency responses of the beam and the effects of different parameters on the system response. The parameters include the magnitude and speed of the moving load and the foundation nonlinearity and its damping coefficient. The solution is obtained by using the Galerkin method in conjunction with the multiple scales method (MSM). The governing nonlinear partial differential equations of motion are discretized into sets of nonlinear ordinary differential equations. Subsequently, the solution is calculated for different harmonics by using the MSM as one of the powerful perturbation techniques. The steady-state responses of the main harmonic as well as its two super-harmonics are then obtained. As a case study, a conventional railway track is dynamically simulated and the jump phenomenon in the response is observed for three harmonics. Moreover, a thorough stability analysis of the system is carried out.  相似文献   

4.
We present a one-parameter family of mathematical models describing the dynamics of polarons in periodic structures, such as linear polypeptides, which, by tuning the model parameter, can be reduced to the Davydov or the Scott model. We describe the physical significance of this parameter and, in the continuum limit, we derive analytical solutions which represent stationary polarons. On a discrete lattice, we compute stationary polaron solutions numerically. We investigate polaron propagation induced by several external forcing mechanisms. We show that an electric field consisting of a constant and a periodic component can induce polaron motion with minimal energy loss. We also show that thermal fluctuations can facilitate the onset of polaron motion. Finally, we discuss the bio-physical implications of our results.  相似文献   

5.
In this article a brief review of the theory of one-dimensional nonlinear lattice is presented. Special attension is paid for the lattice of particles with exponential interaction between nearest neighbors (the Toda lattice). The historical exposition of findings of the model system, basic equations of motion, special solutions, and the general method of solutions are given as chronologically as possible. Some reference to the Korteweg-de Vries equation is also given. The article consists of three parts. Firstly, the idea of dual system is presented. It is shown that the roles of masses and springs of a harmonic linear chain can be exchanged under certain condition without changing the eigenfrequencies. Secondly, the idea is applied to the anharmonic lattice and an integrable lattice with exponential interaction force between adjacent particles is obtained. Special solutions to the equations of motion and general method of solution are shown. In the last part, some studies on the Yang-Yang’s thermodynamic formalism is given.  相似文献   

6.
We provide a general scheme for mapping integrable nonlinear partial differential equations of real functions to moving space curves using an approach different from the one proposed by Lamb. We apply our method to the sine-Gordon equation and obtain links to five new classes of space curves, in addition to the two found by Lamb. For each class, we display the rich variety of moving curves associated with the one-soliton, the breather, the two-soliton and the soliton-antisoliton solutions, and suggest possible applications. Our results also provide new insights with regard to the two-soliton (soliton-antisoliton) scattering process.  相似文献   

7.
文中模拟了在基态非简并聚合物中的极化子和双极化子在弱电场中的运动,研究了在不同简并参数的系统中极化子和双极化子的动力学稳定性,发现在同一个系统中,双极化子比极化子的运动速度慢,晶格振荡小; 在简并参数大的系统中,极化子和双极化子的运动速度都变慢.极化子和双极化子在弱电场下都存在饱和速度,达到饱和速度后, 电场的能量发生了转换.  相似文献   

8.
In this article we develop the direct and inverse scattering theory of the Ablowitz-Ladik system with potentials having limits of equal positive modulus at infinity. In particular, we introduce fundamental eigensolutions, Jost solutions, and scattering coefficients, and study their properties.We also discuss the discrete eigenvalues and the corresponding norming constants. We then go on to derive the left Marchenko equations whose solutions solve the inverse scattering problem. We specify the time evolution of the scattering data to solve the initial-value problem of the corresponding integrable discrete nonlinear Schrödinger equation. The one-soliton solution is also discussed.  相似文献   

9.
We construct one-soliton solutions for the nonlinear Schr¨odinger equation with variable quadratic Hamiltonians in a unified form by taking advantage of the complete (super) integrability of generalized harmonic oscillators. The soliton-wave evolution in external fields with variable quadratic potentials is totally determined by the linear problem, like motion of a classical particle with acceleration, and the (self-similar) soliton shape is due to a subtle balance between the linear Hamiltonian (dispersion and potential) and nonlinearity in the Schr¨odinger equation by the standards of soliton theory. Most linear (hypergeometric, Bessel) and a few nonlinear (Jacobian elliptic, second Painlev′e transcendental) classical special functions of mathematical physics are linked together through these solutions, thus providing a variety of nonlinear integrable cases. Examples include bright and dark solitons and Jacobi elliptic and second Painlev′e transcendental solutions for several variable Hamiltonians that are important for research in nonlinear optics, plasma physics, and Bose–Einstein condensation. The Feshbach-resonance matter-wave-soliton management is briefly discussed from this new perspective.  相似文献   

10.
非线性声波方程的传统二次谐波二阶近似解不够精确,对测量材料的非线性系数造成较大误差.利用摄动法展开非线性声波方程得到一系列非齐次偏微分方程,根据低阶解的性质拟定高阶特解的形式,通过符号计算求出高次谐波特解,对所有二次谐波成分求和最终获得二次谐波的高阶近似解.在水中开展非线性声学实验验证高阶近似解,结果表明:二次谐波相对...  相似文献   

11.
Large adiabatic polarons in anisotropic crystals in the presence of constant magnetic field have been studied within the Holstein molecular crystal model in the continuum approximation. It was shown that magnetic field directed along the symmetry axis induces transverse confinement which may stabilize large polarons. They represent localized (soliton-like) nonlinear structure uniformly propagating along the symmetry axis and rotating around it in the same time. Such objects exist in 3D lattice provided that coupling constant and magnetic field do not exceed certain critical values. In contrast with pure 1D systems existence of large polarons is possible in a quite wider region of the values of coupling constant which may attain considerably higher values than in the pure 1D media. Furthermore, polaron effective mass, depending on the intensity of the applied magnetic field, may be considerably lighter than that of the the pure 1D polarons for the same values of coupling constant. This is the most significant difference with respect to pure 1D systems in the absence of magnetic field and may have substantial impact on polaron transport properties.  相似文献   

12.
We present the exact bright one-soliton and two-soliton solutions of the integrable three coupled nonlinear Schr?dinger equations (3-CNLS) by using the Hirota method, and then obtain them for the general N-coupled nonlinear Schr?dinger equations ( N-CNLS). It is pointed out that the underlying solitons undergo inelastic (shape changing) collisions due to intensity redistribution among the modes. We also analyze the various possibilities and conditions for such collisions to occur. Further, we report the significant fact that the various partially coherent solitons discussed in the literature are special cases of the higher order bright soliton solutions of the N-CNLS equations.  相似文献   

13.
The stability and bifurcation analyses of periodic motions in a rotating blade subject to a torsional excitation are investigated. For high speed rotations, cubic geometric nonlinearity and gyroscopic effects of the rotating blade are considered. From the Galerkin method, the partial differential equation of the nonlinear rotating blade is simplified to the ordinary differential equations, and periodic motions and stability of the rotating blade are studied by the generalized harmonic balance method. The analytical and numerical results of periodic solutions are compared. The rich dynamics and co-existing periodic solutions of the nonlinear rotating blades are investigated.  相似文献   

14.
《Physics letters. A》1987,125(5):247-249
We present a Darboux transformation for the (2 + 1)-dimensional integrable Toda lattice and use it to construct the one-soliton solution.  相似文献   

15.
We propose an integrable system of coupled nonlinear Schr?dinger equations with cubic-quintic terms describing the effects of quintic nonlinearity on the ultrashort optical soliton pulse propagation in non-Kerr media. Lax pairs, conserved quantities and exact soliton solutions for the proposed integrable model are given. The explicit form of two solitons are used to study soliton interaction showing many intriguing features including inelastic (shape changing or intensity redistribution) scattering. Another system of coupled equations with fifth-degree nonlinearity is derived, which represents vector generalization of the known chiral-soliton bearing system.  相似文献   

16.
In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schr?dinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.  相似文献   

17.
We consider a nonlinear lattice in the long wavelength continuum approximation by Wadati. We show that this equation is completely integrable and we construct solutions.  相似文献   

18.
The self-consistent method of lattice dynamics (SCLD) is used to obtain an analytical solution for the free energy of a periodic, one-dimensional, mono-atomic chain accounting for fourth-order anharmonic effects. For nearest-neighbor interactions, a closed-form analytical solution is obtained. In the case where more distant interactions are considered, a system of coupled nonlinear algebraic equations is obtained (as in the standard SCLD method) however with the number of equations dramatically reduced. The analytical SCLD solutions are compared with a numerical evaluation of the exact solution for simple cases and with molecular dynamics simulation results for a large system. The advantages of SCLD over methods based on the harmonic approximation are discussed as well as some limitations of the approach.  相似文献   

19.
刘俊娟  魏增江  常虹  张亚琳  邸冰 《物理学报》2016,65(6):67202-067202
基于一维紧束缚Su-Schrieffer-Heeger模型, 采用分子动力学方法, 讨论了杂质势的强度和杂质之间的距离对电子和空穴极化子动力学性质的影响. 研究结果表明: 1)当杂质势强度保持不变时, 两杂质离子之间的距离(d)在2-16个晶格常数变化时, 电子极化子的平均速度大于空穴极化子的平均速度, 这是由于电子、空穴极化子与杂质势的库仑作用不同而产生的差异, 同时极化子的平均速度随d的增加而增大; 若继续增加杂质离子之间的距离, 电子和空穴极化子的平均速度几乎保持不变, 仅有一些微小的振荡, 这是由于不同距离的杂质离子对电子和空穴极化子产生的势垒或势阱的叠加效果不同而引起的; 2)保持两杂质离子之间的距离不变时, 随着杂质势强度的增大, 电子和空穴极化子的平均速度均减小, 且空穴极化子的平均速度减小趋势更明显.  相似文献   

20.
陈海军  张耀文 《物理学报》2014,63(22):220303-220303
利用变分法和数值计算方法研究了空间调制作用下Bessel型光晶格中玻色-爱因斯坦凝聚体系中孤立子的稳定性, 给出了存在随空间非周期变化的线性Bessel型光晶格和非线性光晶格(原子之间非线性相互作用的空间调制)时, 各种参数组合下涡旋和非涡旋孤立子的稳定性条件. 首先, 利用圆对称的高斯型试探波函数得出描述体系稳定性参数满足的Euler-Lagrange方程和变分法分析体系稳定性所需要的有效作用势能的表达式. 然后, 根据有效作用势能是否具有局域最小值判断体系是否具有稳定状态, 得出体系具有稳定状态时参数所满足的条件. 最后, 利用有限差分法求解Gross-Pitaevskii方程验证变分法结果的正确性, 所得结果和变分法结果一致. 关键词: Bessel型光晶格 非线性光晶格 孤立子 稳定性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号