首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
We investigate electroluminescent characteristics of gradiently doped organic light-emitting diodes, which were gradiently doped in both the hole and the electron-transporting layer to form a double emitting zone. The device structure was ITO/(15nm) CuPc/(60nm) NPB:rubrene/(30nm) Alq3:rubrene/(20nm) Alq3/(0.5nm) LiF/Al. We observed that charge carriers were well trapped by the dopant molecules and the main emitting zone was localized at the NPB:rubrene side close to the interface of NPB:rubrene/Alq3:rubrene. The quantum efficiency (cd/A) was enhanced to 5.89cd/A at 6V. We attributed this improvement to the charge carriers trapping and the emitting of the double emitting zone.  相似文献   

2.
Organic light emitting diodes with an interface of organic acceptor 3-, 4-, 9-,10-perylenetetracarboxylic dianhydride (PTCDA) and donor copper phthalocyanine (CuPc) involved in hole injection are fabricated. As compared to the conventional device using a 5 nm CuPc hole injection layer, the device using an interface of 10nm PTCDA and 5 nm CuPc layers shows much lower operating voltage with an increase of about 46% in the maximum power efficiency. The enhanced device performance is attributed to the efficient hole generation at the PTCDA/CuPc interface. This study provides a new way of designing hole injection.  相似文献   

3.
The dependence of light intensities of organic light-emitting diodes (OLEDs) on the distance of emission zone to metal cathode is investigated numerically. The investigation is based on the half-space optical model that accounts for optical interference effects of metal cathode. We find that light intensities of OLEDs are functions of the distance of emission zone from the metal cathode because of the effect of interference of the metal cathode.This interference leads to an optimal location of emission zone in OLEDs for the maximum of light intensities.Optimal locations of emission zone are numerically shown in various emitting colour OLEDs with different metalcathodes and these results are expected to give insight into the preparation of high efficiency full colour or white light OLEDs.  相似文献   

4.
The double-quantum-well organic light-emitting devices of indium-tin-oxide (ITO)/NPB (50nm)/rubrene (0.05nm)/NPB (4nm)/rubrene (0.05nm)/Alq3 (50nm)/LiF (0.5nm)/Al were fabricated, in which N,N-bis-(1-naphthyl)-N,N‘-diphenyl-1,1‘-biphenyl-4,4‘‘‘‘‘‘‘‘-diamine (NPB) is used as a barrier potential or hole transport layer, tris (8-hydroxyquinoline) aluminium (Alq3) used as electron transport layer, and 5,6,11,12-tetraphenylnaphthacene (rubrene) as a potential well and emitter. The brightness can reach 18610cd/m^2 at 13V. The maximum electroluminescent efficiency of the device was 6.61cd/A at 7V, which was higher than that of common dope-type devices. In addition, the electroluminescence efficiency is relatively independent of the drive voltage in the range from 5 to 13V.  相似文献   

5.
彭进  胡冰 《中国物理快报》2002,19(10):1540-1542
The storage of photoexcited electron-hole pairs is experimentally carried out and theoretically realized by transferring electrons in both real and κ spaces through resonant Γ-X in and AlAs/GaAs heterostructure,This is proven by the peculiar capacitance jump and hysteresis in the measured capacitance-voltage curves.Our structure may be used as a photonic memory cell with a long storage time and a fast retrieval of photons as well.  相似文献   

6.
The near-ultraviolet lighting-emitting-diodes (UV-LEDs) with the InGaN/GaN multi-quantum-well (MQW) structure were grown by low-pressure metalorganic vapour phase epitaxy. The double crystal x-ray diffraction revealed a distinct second-order satellite peak. The near-ultraviolet InGaN/GaN MQW LEDs have been successfully fabricated to emit at 401.2nm with narrow FWHM of 14.3nm and the forward voltage of 3.6 V at 20 mA injection current at room temperature. With increasing forward current from l 0 mA to 50 mA, the redshift of the peak wavelength was observed due to the band-gap narrowing caused by heat generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号