首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, energy analysis of an oscillating isolated spherical bubble in water irradiated by an ultrasonic wave has been theoretically studied for various conditions of acoustic amplitude, ultrasound frequency, static pressure and liquid temperature in order to explain the effects of these key parameters on both sonochemistry and sonoluminescence. The Keller–Miksis equation for the temporal variation of the bubble radius in compressible and viscous medium has been employed as a dynamics model. The numerical calculations showed that the rate of energy accumulation, dE/dt, increased linearly with increasing acoustic amplitude in the range of 1.5–3.0 atm and decreased sharply with increasing frequency in the range 200–1000 kHz. There exists an optimal static pressure at which the power w is highest. This optimum shifts toward a higher value as the acoustic amplitude increases. The energy of the bubble slightly increases with the increase in liquid temperature from 10 to 60 °C. The results of this study should be a helpful means to explain a variety of experimental observations conducted in the field of sonochemistry and sonoluminescence concerning the effects of operational parameters.  相似文献   

2.
Finite-amplitude vibration of a bubble and sonoluminescence   总被引:1,自引:0,他引:1       下载免费PDF全文
钱祖文  肖灵  郭良浩 《中国物理》2004,13(7):1059-1064
Numerical solutions of the differential equation for a bubble performing finite-amplitude vibration are given in detail for a variety of situations. The results demonstrate that in lower acoustic pressure (maximum Mach number very low) its vibration has bounce. When acoustic pressure is in excess of 1.18atm and the instantaneous radius of the bubble approaches its equivalent Van der Waals radius, the maximum velocity and acceleration on the surface of a bubble have a huge increase in a very short period, which seems to favour the sonoluminescence. In vacuum environment (0.1atm), an intensive sonoluminescence could be generated.  相似文献   

3.
A new approach is proposed for explaining the experimental data on sonoluminescence of acoustic and laser-induced cavitation bubbles. It is suggested that two different sonoluminescence mechanisms, namely, thermal and electric ones, are possible and that they manifest themselves depending on the bubble dynamics. An intense thermal luminescence occurs as a result of compression of an individual stationary spherical bubble; a weak electric luminescence accompanies the deformation and splitting of the bubble when thermal luminescence is suppressed (for example, in the case of multibubble sonoluminescence). It is shown that, when an individual bubble loses its spherical shape under the effect of different actions (change in the acoustic pressure, artificial deformation, translatory motion, etc.) or when a laser-induced bubble undergoes fragmentation, the sonoluminescence spectrum exhibits specific bands that are similar to the bands in the multibubble sonoluminescence spectrum. The appearance of these bands is attributed to the suppression of the thermal sonoluminescence mechanism and the manifestation of the electric mechanism. It is shown that the maximum temperature T max characterizing the compression of a laser-induced bubble is primarily determined by the temperature of the plasma at the instant of the laser-induced breakdown, whereas, for an acoustic bubble, T max is primarily determined by the acoustic and hydrostatic pressures and by the saturation vapor pressure of the liquid.  相似文献   

4.
Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.  相似文献   

5.
钱祖文 《中国物理》2001,10(7):636-638
The transient resonance of a sonoluminescence bubble has been analysed. When the bubble performs its transient resonance at the nth order harmonics of the standing waves in the liquid, the light intensity strongly depends on the amplitude of the driving pressure (proportional to its 2n power, with n=fr/f, where fr is Minnaert's linear resonant frequency of the bubble and f is the frequency of driving sound). The kinetic energy of a vibrating bubble becomes maximum approximately when it is in its equilibrium size. For example, when the ambient temperature of a bubble decreases from 34℃ to 4℃, a huge increase of the light intensity emitted by it can be explained. A suggestion was made that, within the limits permitted by the phase diagrams, as high an increase in driving pressure as possible could enhance the light intensity of sonoluminescence up to four orders of magnitude.  相似文献   

6.
7.
The sonoluminescence from aqueous solutions containing various salts in the concentration range of 0 to 7 M has been examined using 3.5 ms pulses of 515 kHz ultrasound. In almost all cases the sonoluminescence intensity recorded increased with increasing salt level until a critical concentration (in the range of 1-2 M) was reached. At salt levels above the critical concentration the signal intensity decreased sharply with increasing salt concentration. It is not possible to satisfactorily account for the trends in terms of changes in solution viscosity, rate of bubble coalescence, water vapour pressure, air/water interfacial tension or ionic strength. However, a good correlation of the increase in the signal with the extent of gas solubilisation in the solutions with changing salt concentration was observed. Possible reasons for the signal increase with the addition of salts and the marked decrease at high salt concentrations are discussed.  相似文献   

8.
We conduct an experimental study of the dependence of single bubble sonoluminescence intensity on the concentration of various alcohols. The light intensity is reduced by one-half at a molar fraction of ethanol of approximately 2.5x10(-5); butanol achieves the same reduction at a concentration 10 times smaller. We account for the results by a theoretical model in which the alcohols are assumed to be mechanically forced into the bubble at collapse, modifying the adiabatic exponent of the gas. The increasing hydrophobicities of the alcohols lead to decreasing effective adiabatic exponents, and thus to less heating and therefore less light. Support for this model is obtained by replotting the experimental light intensity values vs the calculated exponents, yielding a collapse of all data onto a universal curve.  相似文献   

9.
Variations in sonoluminescence (SL) from an acoustically driven but rapidly translating bubble in solutions of sulfuric acid with alkali-metal salts coincide with variations in translational bubble dynamics. At low acoustic pressures, emission from Ar excited states is observed and the bubble motion is smooth and elliptical. At elevated acoustic pressures, SL intensity decreases, emission from excited alkali-metal atoms is observed, and the bubble motion becomes increasingly erratic with frequent and abrupt changes in direction. These results provide a direct experimental link between single and multibubble SL and point toward the origins of sonochemical reactivity of nonvolatile species.  相似文献   

10.
硫酸中多气泡声致发光光谱   总被引:1,自引:0,他引:1       下载免费PDF全文
安宇 《应用声学》2013,32(3):205-211
非线性声波方程与气泡脉动方程联立, 可以描述声空化云中的声场以及任何一个气泡的脉动过程,为数值计算空化场问题提供了理论框架.计算的声压分布变化可以用来计算单气泡动力学,了解任何位置处气泡发光过程以及气泡内气体温度和压强变化等. 对浓硫酸中氙气泡空化云的计算定性符合实验观测, 只有钠原子线谱的计算结果相比实验观测有些出入.  相似文献   

11.
The phenomenon of sonoluminescence still presents some unsolved aspects. Recently [Y.T. Didenko, K. Suslick, Molecular Emission during Single Bubble Sonoluminescence, Nature 407 (2000) 877-879.], it was found that a single cavitating air bubble in polar aprotic liquids (including formamide and adiponitrile) can produce very strong sonoluminescence while undergoing macroscopic translation movements in the resonator, a condition known as moving single bubble sonoluminescing (MSBSL). Here we describe some experiments conducted in aqueous solutions of phosphoric and sulphuric acid. In these liquid media, it is possible to reproduce MSBSL and luminescence is emitted even if a trapped bubble is subjected to a strong shape instability, named in the literature "jittering phase". When a moving and luminescing bubble was present and the acoustic pressure gradually increased, we observed the generation of a discrete lattice of trapped bubbles. The bubbles in the lattice emit very intense light flashes and can change their position while maintaining the overall spatial distribution in time. Some preliminary results, obtained from Mie-scattering and measurements of relative light intensity, are reported.  相似文献   

12.
Ultrasound induced cavitation (acoustic cavitation) process is found useful in various applications. Scientists from various disciplines have been exploring the fundamental aspects of acoustic cavitation processes over several decades. It is well documented that extreme localised temperature and pressure conditions are generated when a cavitation bubble collapses. Several experimental techniques have also been developed to estimate cavitation bubble temperatures. Depending upon specific experimental conditions, light emission from cavitation bubbles is observed, referred to as sonoluminescence. Sonoluminescence studies have been used to develop a fundamental understanding of cavitation processes in single and multibubble systems. This minireview aims to provide some highlights on the development of basic understandings of acoustic cavitation processes using cavitation bubble temperature, sonoluminescence and interfacial chemistry over the past 2–3 decades.  相似文献   

13.
Vijay H Arakeri 《Pramana》1993,40(2):L145-L147
It has been recently demonstrated that a single gas bubble in a liquid medium can be driven hard enough by an acoustic pressure field to make it emit light which is visible to the naked eye in a dark room. This phenomenon termed as single bubble sonoluminescence has shown some extraordinary physical properties. In the present investigation we have shown that dissolved air content has a significant influence on this phenomenon.  相似文献   

14.
Temperature and pressure dependence of sonoluminescence   总被引:2,自引:0,他引:2  
The dependence of sonoluminescence on ambient pressure and temperature is measured. As water is cooled, there occurs a 100-fold increase in light emission which can be accompanied by only slight changes in the ambient radius of the pulsating bubble. This suggests that water vapor trapped in the collapsing bubble is a key parameter for this system. For fixed concentration of gases in water, the maximum intensity of sonoluminescence decreases as the ambient pressure is lowered below 1 atm.  相似文献   

15.
The average pressure inside a sonoluminescing bubble in sulfuric acid has been determined by two independent techniques: (1) plasma diagnostics applied to Ar atom emission lines, and (2) light scattering measurements of bubble radius vs time. For dimly luminescing bubbles, both methods yield intracavity pressures approximately 1500 bar. Upon stronger acoustic driving of the bubble, the sonoluminescence intensity increases 10,000-fold, spectral lines are no longer resolved, and radius vs time measurements yield internal pressures > 3700 bar. Implications for a hot inner core are discussed.  相似文献   

16.
马艳  林书玉  徐洁  唐一璠 《物理学报》2017,66(1):14302-014302
考虑了非球形气泡在声场中的形状振动,推导了非球形气泡和球形气泡之间的次Bjerknes力方程,数值模拟了声场中非球形气泡和球形气泡之间的次Bjerknes力和两个球形气泡之间的次Bjerknes力,并对非球形气泡和球形气泡之间的次Bjerknes力的影响因素进行了分析讨论.研究结果表明:当驱动声压振幅大于非球形气泡的Black阈值且又能使得非球形气泡稳定振动时,在第一个声驱动周期内,非球形气泡和球形气泡之间的次Bjerknes力和两个球形气泡的次Bjerknes力方向差异较大,在大小上是两个球形气泡次Bjerkens力的数倍,且有着更长的作用距离.非球形气泡和球形气泡之间的次Bjerknes力取决于非球形气泡的形状模态、两个气泡初始半径的比值、驱动声压振幅、气泡间距和两个气泡的相对位置.  相似文献   

17.
Huang W  Chen W  Liu Y  Gao X 《Ultrasonics》2006,44(Z1):e407-e410
In this paper, the relation between the ambient radius R(0) of the acoustic cavitation bubble and its driving pressure was investigated by an improved method. The evolution of the bubble was gained with a long-distance microscope and a bundle of 532 nm laser switched by an acousto-optic modulator. The ambient radius R(0) was determined by fitting the numerical calculation based on Rayleigh-Plesset equation to the experimental data. The results showed that as the sound pressure increased R(0) decreased at beginning and increased after the pressure reached to about 1.2 atm. Although the same rule was gotten from the relation between the maximum radius R(m) and the sound pressure, the ratio R(m)/R(0) varied monotonously with the sound pressure. It indicates that enhancing the sound pressure can increase the compression ratio of the bubble even if the mass inside the bubble is also increased.  相似文献   

18.
19.
Sonoluminescence     
《应用光谱学评论》2013,48(3):399-436
Abstract

Sonoluminescence is the light emission phenomenon from collapsing bubbles in liquid irradiated by an ultrasonic wave. In the present review, theoretical and experimental studies of the two types of sonoluminescence [single‐bubble sonoluminescence (SBSL) and multibubble sonoluminescence (MBSL)] are described. SBSL is a sonoluminescence from a single stably pulsating bubble trapped at the pressure antinode of a standing ultrasonic wave. MBSL is a sonoluminescence occurring from many bubbles in liquid irradiated by an ultrasonic wave. The theoretical and experimental studies suggest that SBSL originates in emissions from plasma inside the heated bubble at the bubble collapse, whereas MBSL originates both in emissions from plasma and in chemiluminescence inside heated bubbles at the bubble collapse. Unsolved problems of sonoluminescence have also been explained in detail.  相似文献   

20.
Luminescence bands of Tb3+ and Gd3+ ions are detected during sonolysis in the regime of a moving single bubble in aqueous solutions of TbCl3 and GdCl3 salts with concentration 1–2 mol/L. Saturation with argon, low temperatures of solutions (?5°C), and a high concentration of salts are the factors facilitating sonoluminescence of the metal. Comparison with the characteristics of sonoluminescence of lanthanide ions studied earlier in the regimes of multibubble and single-bubble sonolysis with a stationary bubble shows that the electron excitation of metal ions in the given case is associated with translational displacements of the bubble. Our results confirm the validity of the sonochemical model of microdroplet injection, which explains the penetration of nonvolatile salts into cavitation bubbles as a result of their deformation during intense movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号