首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Masking-level differences (MLDs) were measured for trains of 2000-Hz bandpass clicks as a function of the interclick interval (ICI) and the number of clicks in the train. The magnitude of the MLD grew as the number of clicks in the train was increased from 1 to 32. While the MLDs tended to be larger at longer ICIs, the effect was mediated by changes in detectability in the homophasic conditions. For click trains consisting of 4-32 clicks, the improvement in detectability in the antiphasic conditions with increases in the number of clicks appears to be the result of integration of acoustic power, as is the case for the homophasic conditions. The absence of MLDs for short trains of high-frequency transients remains quite puzzling, since large MLDs are found with single, low-frequency transients.  相似文献   

2.
Dusky dolphin (Lagenorhynchus obscurus) acoustic sounds were characterized by analyzing narrowband recordings [0-16 kHz in New Zealand (NZ) and 0-24 kHz in Argentina], and sounds in broadband recordings (0-200 kHz) were compared to their counterparts in down-sampled narrowband recordings (0-16 kHz). The most robust similarity between sounds present in broadband recordings and their counterparts in the down-sampled narrowband recordings was inter-click interval (ICI); ICI was therefore primarily used to characterize click sounds in narrowband recordings. In NZ and Argentina, distribution of ICIs was a continuum, although the distribution of ICIs in NZ had a somewhat bimodal tendency. In NZ, sounds that had smaller mean ICIs were more likely to have constant ICIs, and less likely to have increasing or decreasing ICIs. Similar to some other delphinids, dusky dolphins may use single, short duration sounds that have a constant ICI and closely spaced clicks for communication. No whistles were documented at either study site. Temporally structured sequences of burst pulses (i.e., sounds with ICI < about 10 ms) also occurred at both study sites, and these sequences contained 2-14 burst pulses that appeared closely matched aurally and in spectrograms and waveforms.  相似文献   

3.
Listeners detected interaural differences of time (ITDs) or level (ILDs) carried by single 4000-Hz Gabor clicks (Gaussian-windowed tone bursts) and trains of 16 such clicks repeating at an interclick interval (ICI) of 2, 5, or 10 ms. In separate conditions, target interaural differences favored the right ear by a constant amount for all clicks (condition RR), attained their peak value at onset and diminished linearly to 0 at offset (condition R0), or grew linearly from 0 at onset to a peak value at offset (condition 0R). Threshold ITDs and ILDs were determined adaptively in separate experiments for each of these conditions and for single clicks. ITD thresholds were found to be lower for 16-click trains than for single clicks at 10-ms ICI, regardless of stimulus condition. At 2-ms ICI, thresholds in RR and R0 conditions were similar to single click thresholds at 2-ms ICI; thresholds in the 0R condition were significantly worse than for single clicks at 2-ms ICI, consistent with strong rate-dependent onset dominance in listeners' temporal weighting of ITD. ILD thresholds, in contrast, were predominantly unaffected by ICI, suggesting little or no onset dominance for ILD of high-rate stimuli.  相似文献   

4.
Interaural differences of time (IDT) thresholds were measured with 600-microseconds transients. The initial experiment was a successful replication of previous experiments that have obtained the precedence effect in lateralization paradigms (e.g., Yost and Soderquist, 1984). When a dichotic click followed a diotic click with an interclick interval (ICI) less than 1 ms or larger than 5 ms, IDT thresholds were generally less than 40 microseconds. For ICIs between 1 to 5 ms, IDT thresholds increased to approximately 220 microseconds. Poorest performance was observed for ICIs of 1.75 to 2.35 ms. During the course of conducting a series of planned experiments on this effect, a substantial drop in IDT thresholds was observed across the ICIs of maximum interest (1 to 5 ms). The precedence effect, which we had replicated in our initial experiment, essentially "disappeared" when the subjects were given sufficient practice on the lateralization task. A number of conditions were explored in an unsuccessful attempt to recover the precedence effect in these experienced subjects. The implications of these results are discussed.  相似文献   

5.
Listeners were asked to detect interaural differences of intensity in trains of 4000-Hz clicks as the interclick interval (ICI) was varied from 10 to 1 ms and the number of clicks in a train (n) was varied from 1 to 32. As has previously been shown for differences of time [Hafter and Dye, J. Acoust. Soc. Am. 73, 644-651 (1983)], plots of log interaural threshold versus log n produced slopes that decrease with ICI. These results are explained in terms of a saturation model which argues that as the click rate increases, the evoked neural activity changes from what is essentially a tonic response toward one that is more phasic.  相似文献   

6.
Recent work has demonstrated that sensitivity to interaural time differences (ITD) carried by high-rate cochlear implant pulse trains or analogous acoustic signals can be enhanced by imposing random temporal variation on the stimulus rate [see Goupell et al. (2009). J. Acoust. Soc. Am. 126, 2511-2521]. The present study characterized the effect of such "temporal jitter" on normal-hearing listeners' weighting of ITD and interaural level differences (ILD) applied to brief trains of Gabor clicks (4 kHz center frequency) presented at nominal interclick intervals (ICI) of 1.25 and 2.5 ms. Lateral discrimination judgments were evaluated on the basis of the ITD or ILD carried by individual clicks in each train. Random perturbation of the ICI significantly reduced listeners' weighting of onset cues for both ITD and ILD discrimination compared to corresponding isochronous conditions, consistent with enhanced sensitivity to post-onset binaural cues in jittered stimuli, although the reduction of onset weighting was not statistically significant at 1.25 ms ICI. An additional analysis suggested greater weighting of ITD or ILD presented following lengthened versus shortened ICI, although weights for such "gaps" and "squeezes" were comparable to other post-onset weights. Results are discussed in terms of binaural information available in jittered versus isochronous stimuli.  相似文献   

7.
Sounds from Longman's beaked whale, Indopacetus pacificus, were recorded during shipboard surveys of cetaceans surrounding the Hawaiian Islands archipelago; this represents the first known recording of this species. Sounds included echolocation clicks and burst pulses. Echolocation clicks were grouped into three categories, a 15 kHz click (n?=?106), a 25 kHz click (n?=?136), and a 25 kHz pulse with a frequency-modulated upsweep (n?=?70). The 15 and 25 kHz clicks were relatively short (181 and 144 ms, respectively); the longer 25 kHz upswept pulse was 288 ms. Burst pulses were long (0.5 s) click trains with approximately 240 clicks/s.  相似文献   

8.
Threshold values of interaural differences of time (delta IDTs ) were measured for trains of dichotic clicks whose levels were 20, 40, or 60 dB SPL. All clicks were bandpass filtered at 4 kHz, and the number of clicks in the train (n) was 1, 2, 4, 8, 16, or 32. The interclick interval (ICI) was 5, 2, or 1 ms. Performance was compared to that of an ideal integrator of information, which produces slopes of - 0.5 when log delta IDT versus log n is plotted. The results showed that increases in level had no effect on the slopes of the log-log functions regardless of the ICI but did decrease the intercepts. Shortening the ICI caused the slopes to go from nearly - 0.5 towards 0.0. The improvement with level could be explained by either a decrease in the temporal variability of neural discharges, or by an increase in the number of samples of IDT at higher intensities brought on by increased firing rates or the activation of more auditory units. A review of the physiological literature found the most parsimonious explanation to be that the decline in threshold IDT was mediated by an increase in the number of active units, each possessing the same degree of adaptation.  相似文献   

9.
Listeners detected interaural differences of time in trains of high-frequency clicks. The manipulated variables were the number of clicks in the train and the period between clicks. Thresholds were compared to an optimal integrator, where the binaural information accrued from each click in the stimulus train is equivalent. In agreement with data reported in the past, integration is optimal only when the period between clicks exceeds approximately 10 ms and when the duration of the entire stimulus train is less than about 250 ms. The first constraint represents a limitation due to a form of "binaural adaptation" and the second is due to a limited "integration period."  相似文献   

10.
Pollimyrus adspersus is a fish that uses simple sounds for communication and has auditory specializations for sound-pressure detection. The sounds are species-specific, and the sounds of individuals are sufficiently stereotyped that they could mediate individual recognition. Behavioral measurements are presented indicating that Pollimyrus probably can make species and individual discriminations on the basis of acoustic cues. Interclick interval (ICI; 10-40 ms) and frequency (100-1400 Hz) discrimination was assessed using modulations of the fish's electric organ discharge rate in the presence of a target stimulus presented in alternation with an ongoing base stimulus. Tone frequency discrimination was best in the 200-600-Hz range, with the best threshold of 1.7% +/- 0.4% standard error at 500 Hz (or 8.5 Hz +/- 1.9 SE). The just noticeable differences (jnd's) were relatively constant from 100 to 500 Hz (mean 8.7 Hz), then increased at a rate of 13.3 Hz per 100 Hz. For click trains, jnd's increased linearly with ICI. The mean jnd's for 10- and 15-ms ICI were both 300 micros (SE= 0.8 ms at 10-ms ICI, SE= 0.11 ms at 15-ms ICI). The jnd at 20-ms ICI was only 1.1 ms +/- 0.25 SE.  相似文献   

11.
This paper presents several experiments on sound source localization. They are based on monaural click presented at different interclick intervals (ICI), from 10 to 100 ms. Trains of clicks were presented to 10 healthy subjects. At short interclick intervals the clicks were perceived as a blur of clicks having a buzzy quality. Moreover, it was proven that the accurateness in the response improves with the increase of the length of ICI. The present results imply the usefulness of the interclick interval in estimating the perceptual accuracy. An important benefit of this task is that this enables a careful examination of the sound source perception threshold. This allows detecting, localizing and dividing with a high accuracy the sounds in the environment. The text was submitted by the authors in English.  相似文献   

12.
False killer whale Pseudorca crassidens auditory brainstem responses (ABR) were recorded using a double-click stimulation paradigm specifically measuring the recovery of the second response (to the test click) as a function of the inter-click interval (ICI) at various levels of the conditioning and test click. At all click intensities, the slopes of recovery functions were almost constant: 0.6-0.8 microV per ICI decade. Therefore, even when the conditioning-to-test-click level ratio was kept constant, the duration of recovery was intensity-dependent: The higher intensity the longer the recovery. The conditioning-to-test-click level ratio strongly influenced the recovery time: The higher the ratio, the longer the recovery. The dependence was almost linear using a logarithmic ICI scale with a rate of 25-30 dB per ICI decade. These data were used for modeling the interaction between the emitted click and the echo during echolocation, assuming that the two clicks simulated the transmitted and echo clicks. This simulation showed that partial masking of the echo by the preceding emitted click may explain the independence of echo-response amplitude of target distance. However, the distance range where this mechanism is effective depends on the emitted click level: The higher the level, the greater the range. @ 2007 Acoustical Society of America.  相似文献   

13.
Click trains were generated with first- and second-order statistics following Kaernbach and Demany [J. Acoust. Soc. Am. 104, 2298-2306 (1998)]. First-order intervals are between successive clicks, while second-order intervals are those between every other click. Click trains were generated with a repeating alternation of fixed and random intervals which produce a pitch at the reciprocal of the duration of the fixed interval. The intervals were then randomly shuffled and compared to the unshuffled, alternating click trains in pitch-strength comparison experiments. In almost all comparisons for the first-order interval stimuli, the shuffled-interval click trains had a stronger pitch strength than the unshuffled-interval click trains. The shuffled-interval click trains only produced stronger pitches for second-order interval stimuli when the click trains were unfiltered. Several experimental conditions and an analysis of runs of regular and random intervals in these click trains suggest that the auditory system is sensitive to runs of regular intervals in a stimulus that contains a mix of regular and random intervals. These results indicate that fine-structure regularity plays a more important role in pitch perception than randomness, and that the long-term autocorrelation function or spectra of these click trains are not good predictors of pitch strength.  相似文献   

14.
Echolocating dolphins emit trains of clicks and receive echoes from ocean targets. They often emit each successive ranging click about 20 ms after arrival of the target echo. In echolocation, decisions must be made about the target--fish or fowl, predator or food. In the first test of dolphin auditory decision speed, three bottlenose dolphins (Tursiops truncatus) chose whistle or pulse burst responses to different auditory stimuli randomly presented without warning in rapid succession under computer control. The animals were trained to hold pressure catheters in the nasal cavity so that pressure increases required for sound production could be used to split response time (RT) into neural time and movement time. Mean RT in the youngest and fastest dolphin ranged from 175 to 213 ms when responding to tones and from 213 to 275 ms responding to pulse trains. The fastest neural times and movement times were around 60 ms. The results suggest that echolocating dolphins tune to a rhythm so that succeeding pulses in a train are produced about 20 ms over target round-trip travel time. The dolphin nervous system has evolved for rapid processing of acoustic stimuli to accommodate for the more rapid sound speed in water compared to air.  相似文献   

15.
Recordings of the acoustic activity of free-swimming groups of echolocating dolphins increase the likelihood of collecting overlapping click trains, originating from multiple individuals, in the same set of data. In order to evaluate the click properties of each individual based on such recordings it is necessary to identify which clicks originate from which animal. This paper suggests a computationally efficient strategy to separate overlapping click trains originating from multiple free-swimming bottlenose dolphins, enabling echolocation analysis at an individual level on several animals. This technique is based on sequential matching of the frequency spectra of successive clicks. The clicks are grouped together as individual click trains if the correlation coefficients between clicks are higher than a pre-set threshold level. The robustness of the algorithm is tested by adding artificially generated white Gaussian noise and comparing the results with other comparable commonly used methods based on inter-click intervals, centroid frequencies, and amplitude levels. The described method is applicable to a variety of experimental and observational contexts, e.g., those regarding echolocation development of calves, the hypothesized acoustic "etiquette" among dolphins when investigating the same object, and the possible occurrence of eavesdropping in large dolphin pods.  相似文献   

16.
This study examined the deleterious effects of a later-arriving sound on the processing of interaural differences of time (IDTs) from a preceding sound. A correlational analysis assessed the relative weight given to IDTs of source and echo clicks for echo delays of 1-64 ms when the echo click was attenuated relative to the source click (0-36 dB). Also measured were proportion correct and the proportion of responses predicted from the weights. The IDTs of source and echo clicks were selected independently from Gaussian distributions (mu=0 s, sigma = 100/s). Listeners were instructed to indicate the laterality of the source click. Equal weight was given to the source and echo clicks for echo delays of 64 ms with no echo attenuation. For echo delays of 16-64 ms, attenuating the echo had no substantial effect on source weight or proportion correct until the echo was attenuated by 18-30 dB. At echo delays < or =4 ms, source weights and proportions correct remained high regardless of echo attenuation. The proportions of responses predicted from the weights were lower at echo delays > or =16 ms. Results were discussed in terms of backward recognition masking and binaural sluggishness and compared to measurements of echo disturbance.  相似文献   

17.
A simple passive acoustic monitoring (PAM) setup was used to localize and track beluga whales underwater in three dimensions (3D) in a fjord. In June 2009, beluga clicks were recorded from a cabled hydrophone array in a regularly frequented habitat in Eastern Canada. Beluga click energy was concentrated in the 30-50 kHz frequency band. The click trains detected on several hydrophones were localized from their time difference of arrivals. Cluster analysis linked localizations into tracks based on criteria of spatial and temporal proximity. At close ranges from the array, the localized click-train series allowed three-dimensional tracking of a beluga during its dive. Clicks within a train spanned a large range of durations, inter-click intervals, source levels and bandwidths. Buzzes sometimes terminated the trains. Repeated click packets were frequent. All click characteristics are consistent with oblique observations from the beam axis, and ordered variation of the source pattern during a train, likely resulting from a scan of angles from the beam axis, was observed before click trains indicated focusing of the echolocation clicks in one direction. The click-train series is interpreted as echolocation chasing for preys during a foraging dive. Results show that a simple PAM system can be configured to passively and effectively 3D track wild belugas and small odontocetes in their regularly frequented habitat.  相似文献   

18.
Passive acoustic monitoring (PAM) of marine mammal vocalizations has been efficiently used in a wide set of applications ranging from marine wildlife surveys to risk mitigation of military sonar emissions. The primary use of PAM is for detecting bioemissions, a good proportion of which are impulse sounds or clicks. A click detection algorithm based on kurtosis estimation is proposed as a general automatic click detector. The detector works under the assumption that click trains are embedded in stochastic but Gaussian noise. Under this assumption, kurtosis is used as a statistical test for detection. The algorithm explores acoustic sequences with the optimal frequency bandwidth for focusing on impulse sounds. The detector is successfully applied to field observations, and operates under weak signal to noise ratios and in presence of stochastic background noise. The algorithm adapts to varying click center frequency. Kurtosis appears as a promising approach to detect click trains, alone or in combination with other clicks detector, and to isolate individual clicks.  相似文献   

19.
The click-evoked otoacoustic emission (CEOAE) level-curve grows linearly for clicks below 40-60 dB and saturates for higher inputs. This study investigates dynamic (i.e., time-dependent) features of the CEOAE level-curve by presenting a suppressor-click less than 8 ms before the test-click. An alteration of the CEOAE level-curve, designated here as temporal suppression, was observed within this time period, and was shown to depend on the levels and the temporal separation of the two clicks. Temporal suppression occurred for all four subjects tested, and resulted in a vertical offset from the unsuppressed level-curve for test-click levels greater than 50 dB peak-equivalent level (peSPL). Temporal suppression was greatest for suppressors presented 1-4 ms before the test click, and the magnitude and time scale of the effect were subject dependent. Temporal suppression was furthermore observed for the short- (i.e., 6-18 ms) and long-latency (i.e., 24-36 ms) regions of the CEOAE, indicating that temporal suppression similarly affects synchronized spontaneous otoacoustic emissions (SSOAEs) and purely evoked CEOAE components. Overall, this study demonstrates that temporal suppression of the CEOAE level-curve reflects a dynamic process in human cochlear processing that works on a time scale of 0-10 ms.  相似文献   

20.
Three experiments evaluating the effects of various stimulus manipulations on the click-evoked gerbil brain-stem auditory-evoked response (BAER) are reported. In experiment 1, click polarity and level were covaried. With increasing click level, there is a parallel decrease in the latency of the first five BAER peaks (i-v) and an increase in BAER peak amplitudes. Mean wave i amplitude was greater for rarefaction than condensation clicks at high click levels; mean wave v amplitude was greater for condensation clicks at higher click levels. Experiment 2 covaried click rate and polarity. The latency of the BAER peaks increased with increasing click repetition rate. This rate-dependent latency increase was greater for the later BAER peaks, resulting in an increase in the i-v interval with increasing click rate. As rate increased, the amplitudes of waves i and v decreased monotonically, whereas the amplitudes of waves ii-iv were largely uninfluenced by click rate. As in experiment 1, mean wave i amplitude was greater for rarefaction clicks, whereas mean wave v amplitude was greater for condensation clicks. The magnitude of these polarity dependencies on waves i and v amplitude decreased with increasing click rate. Experiment 3 evaluated the effects of click polarity on BAERs to high-intensity (100 dB pSPL) clicks presented at a rate of 10 Hz. In eight of ten gerbils evaluated, wave i amplitude was greater to rarefaction clicks, and, in all ten animals, wave v amplitude was greater to condensation clicks. The effects of click level and rate on BAER peak amplitudes, latencies, and interwave intervals are reminiscent of stimulus dependencies reported for the human BAER. The effects of click polarity on the amplitudes of waves i and v of the gerbil BAER have also been reported for the human BAER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号